검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1

        1.
        2016.12 KCI 등재 서비스 종료(열람 제한)
        최근 게임분야에서 수준 높은 인공지능 에이전트의 구현은 많은 주목을 받고 있다. 그 중 Monte-Carlo Tree Search(MCTS)는 완전 정보를 가진 게임에서 무작위 탐색을 통해 최적의 해를 구할 수 있는 알고리즘으로, 수식으로 표현되지 않는 경우에 근사치를 계산하는 용도로 적합하다. 하스스톤과 같은 Trading Card Game(TCG) 장르의 게임은 상대방의 카드와 플레이 를 예측할 수 없기 때문에 불완전 정보를 가지고 있다. 본 논문에서는 불완전 정보 카드 게임 에서 인공지능 에이전트를 생성하기 위해 MCTS 알고리즘을 응용하는 방법을 제안하고, 현재 서비스되는 하스스톤 게임에 적용하여 봄으로써 MCTS 알고리즘의 실용성을 검증한다.