In recent years, the diminishing of operation and maintenance cost using advanced maintenance technology is attracting many companies’ attention. Especially, the heavy machinery industry regards it as a crucial problem since a failure of heavy machinery requires high cost and long downtime. To improve the current maintenance process, the heavy machinery industry tries to develop a methodology to predict failure in advance and to find its causes using usage data. A better analysis of failure causes requires more data so that various kinds of sensor are attached to machines and abundant amount of product usage data is collected through the sensor network. However, the systemic analysis of the collected product usage data is still in its infant stage. Many previous works have focused on failure occurrence as statistical data for reliability analysis. There have been less works to apply product usage data into root cause analysis of product failure. The product usage data collected while failures occur should be considered failure cause analysis. To do this, this study proposes a methodology to apply product usage data into failure cause analysis. The proposed methodology in this study is composed of several steps to transform product usage into failure causes. Various statistical analysis combined with product usage data such as multinomial logistic regression, T-test, and so on are used for the root cause analysis. The proposed methodology is applied to field data coming from operated locomotive and the analysis result shows its effectiveness.
The current study identified risk factors associated with porcine circovirus type 2 (PCV2) infection on pig farms in the Republic of Korea using a multinomial logistic regression model to evaluate the PCV2 infection status of pigs at different growth stages. Compulsory disinfection of visitors (odds ratio [OR]: 0.019, 95% confidence interval [CI]: <0.001–0.378, p=0.0095), compulsory registration of visitors (OR: 0.002, 95% CI: <0.001–0.184, p=0.0070), regular blood testing (OR: 0.012, 95% CI: <0.001–0.157, p=0.0007), and running on-farm biosecurity learning programs for workers (OR: 0.156, 95% CI: 0.040–0.604, p=0.0072 and OR: 0.201, 95% CI: 0.055–0.737, p=0.0155, respectively) were identified as factors which could reduce the risk of PCV2 infection. However, visitation by a regular veterinarian (OR: 32.733, 95% CI: 3.768–284.327, p=0.0016) was associated with PCV2 infection.