This study investigates the role of the NAC transcription factor ANAC032 in regulating abscisic acid (ABA)-dependent stress responses and its involvement in sugar signaling pathways. Arabidopsis seedlings with overexpressed or knock-out ANAC032 were examined for their sensitivity to ABA, glucose, and fluridone to elucidate the functional role of ANAC032 in ABA and high glucose-mediated growth retardation. Our results showed that ANAC032 negatively regulates ABA responses, as ANAC-overexpressing plants exhibited higher ABA sensitivity, while anac032 mutants were less sensitive. Under high glucose conditions, anac032 mutants demonstrated hyposensitivity, with germination rates higher than wild-type and ANAC032-overexpressing plants. Additionally, yeast two-hybrid screening identified three NAC proteins, ANAC020, ANAC064, and ANAC074, interact with ANAC032. These findings highlight ANAC032’s role in stress signaling pathways and its potential interactions with other NAC proteins, contributing to a better understanding of transcriptional regulation in plant stress responses and possibly expanding to forage crop development.
The plant-specific NAC (NAM, ATAF, and CUC)-domain proteins play important roles in plant development and stress responses. Comparative time-course expression analyses were carried out to analyze the expression levels of 62 soybean NAC genes during drought stress in order to search for the stress-inducible NAC genes. Ten GmSNAC (Glycine max stress-inducible NAC) genes having the significant differential expression in response to the drought stress and abscisic acid (ABA) hormone application were further investigated for their expression profiles with various stresses such as drought, high salinity, cold and with ABA treatments by the quantitative real-time PCR analyses. In this research, the full-length cDNAs of eight GmSNAC were isolated for the further studies. Eight GmSNAC proteins were tested for their transcription activation in the yeast assay system. Two GmSNAC proteins showed the very high transcriptional activities and the other two GmSNAC proteins displayed moderate levels of transactivation while the remaining four GmSNAC proteins lacked transactivation in yeast. Subcellular localization of eight GmSNAC proteins was analyzed via the green fluorescent protein-GmSNAC fusion protein in tobacco plant cell. Three GmSNAC proteins with the C-terminal transmembrane domain were localized to the nucleus and cytoplasmic fractions. The other five GmSNAC proteins were targeted to the nucleus. The function of GmSNAC49 gene was further investigated using the overexpression transgenic Arabidopsis. Germination rate in transgenic plants over-expressing GmSNAC49 was delayed in the media supplemented with mannitol or ABA compared with that of wild-type (WT) plants. The 35S:GmSNAC49 transgenic Arabidopsis displayed improved tolerance to drought stress compared to the WT. The results of this systematic analysis of the GmSNAC family responsive to abiotic stress will provide novel tools and resources for the development of improved drought tolerant transgenic soybean cultivars