검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A thermally conductive film can be used to laterally conduct heat along the surface of glass windows, toward its edges where a heat sink could be located, thereby reducing temperature differential between the inside and outside surfaces of the window and thus lowering cross-sectional conductive heat transfer. This technique can offer optimized thermal energy management to modern buildings without the weight and cost of double- or triple-glazed window panels. In this work, a thermally conductive film was developed using carbon dots with inherently high thermal conductivity. Nitrogen atoms were then added to the carbon dots structure to intensify high-frequency phonon that would result in higher lateral thermal conductivity. The nitrogen-decorated carbon dots (NCDs) were prepared by a simple hydrothermal synthesis of citric acid with the addition of ethylenediamine as the N source. The NCDs were added to a cellulose-based solution and drop-casted onto FTO glass resulting in a transparent, laterally thermally conductive film, that also blocks ultraviolet (UV) and high-intensity blue light radiation. The visible-light transmission of the NCDs’ film was found to be up to 65%, comparable to the commercial solar films. The lateral thermal conductivity of the NCDs’ film increases with increasing N content up to an optimum level, suggesting the role of N to “concentrate’ the high-frequency phonons responsible for effective lateral thermal conductivity of the films.
        4,000원
        3.
        2018.05 구독 인증기관·개인회원 무료
        The ride quality (i.e. smoothness) is a key factor for evaluating the construction quality of expressway asphalt pavement. Conventionally, three paving devices are widely used to control the surface layer thickness: leveling sensor (i.e. LS), short-range-surfacing-contact-ski (i.e. SSCS) and long-range-surfacing-contact-ski (i.e. LSCS). However, each of these levelling tools presents one major drawback. In the case of LS, if the original sub-layer evenness is poor, the final asphalt pavement surface and its smoothness will be negatively affected. The SSCS cannot assure satisfactory smoothness when relatively long paving section (in the order of 10 km) are paved. While the LSCS would reduce the drawback of the SSCS, its weight on the one hand and its length on the other discourage its use in the paving site especially for curved sections. In this paper, a next generation pavement smoothness leveling equipment, known as non-contact-digital-ski (i.e. NCDS) was implemented, evaluated and compared to the conventional equipment leveling device. The international Roughness Index (IRI m/km) was measured on sections paved with and without NCDS and the results visually and statistically compared. In addition, for the same sections, the modulus of the pavement layers was computed and compared by means of Falling Weight Deflectometer (i.e. FWD). It was observed that when NCDS is used for asphalt pavement overlay of existing concrete pavement, significant improvement in IRI (i.e. IRI<1.0m/km) and consistently uniform elastic modulus could be achieved compared to the conventional levelling and paving method.