In this study, a response model of a beam structure was established through finite element analysis by analyzing the vibration response to external excitation. The vibration control performance of the beam was then evaluated by applying the narrow-band Fx-LMS algorithm for active structural control. The transfer function was obtained at the error sensor location when the structure was excited and the three-axis actuator was operated. The performance of the active control was investigated with 18 channels for error input and actuator output. When the equipment is exciting, the response of the error sensor is the primary path, and when the inertial 3-axis actuator operates, the response of the error sensor position is the secondary path, and the Fx-LMS algorithm is applied. The simulation was performed by changing the control parameters so that the response of the error sensor can satisfy the target performance. From the results of this study, the acceleration results over time showed about 70% vibration reduction after active control, and the average error value of the error sensor also decreased by about 68%. In addition, it was confirmed that real-time control of a system with 18 sensors and 18 actuators is possible even if the secondary path is configured in two orders.
In this paper, the model for predicting yields of chinese cabbages of each cultivar (joined-up in 2015 and wrapped-up in 2016) was developed after the reflectance of hyperspectral imagery was merged as 10 nm, 25 nm and 50 nm of FWHM (full width at half maximum). Band rationing was employed to minimize the unstable reflectance of multi-temporal hyperspectral imagery. The stepwise analysis was employed to select key band ratios to predict yields in all cultivars. The key band ratios selected for each of FWHM were used to develop the yield prediction models of chinese cabbage for all cultivars (joined-up & wrapped-up) and each cultivar (joined-up, wrapped-up). Effective accumulated temperature (EAT) was added in the models to evaluate its improvement of performances. In all models, the performance of models was improved with adding of EAT. The models with EAT for each of FWHM showed the predictability of yields in all cultivars as R2≥0.80, RMSE≤694 g/plant and RE≤28.3%. Such as this result, if the yield can be predicted regardless of the cultivar, it is considered to be advantageous when predicting the yield over a wide area because it is not require a cultivar classification work as pre-processing in imagery.
Miliaria crystallina is due to obstruction of the eccrine sweat duct as it courses through the stratum corneum. Miliaria crystallina consists of superficial, subcorneal, and noninflammatory vesicles. Ultraviolet light exposure, resident organisms on skin, and repeated sweating episodes are considered as facilitating factors. Ultraviolet phototherapy with narrowband ultraviolet B (NBUVB) has been known to have a beneficial effect on various skin diseases. It may be considered to be an alternative for generalized pruritus patients, especially if they are resistant to standard treatments. Herein, we present a case of adult miliaria crystallina due to artificial ultraviolet radiation for phototherapy. Although it is underestimated for self-limited disorder and short duration, we should keep in mind that NBUVB phototherapy commonly used in dermatology may cause a miliaria crystallina.