본 연구에서 조합 최적화(Combinatorial Optimization) 이론에 바탕을 두고 있는 네스티드 분할(Nested Partition, 이하 NP) 방법을 이용한 최적화 기반 요소선택 방법(Feature Selection)을 제안한다. 이 새로운 방법은 좋은 요소 부분집합을 찾는 휴리스틱 탐색 절차를 채용하고 있으며 데이터의 인스턴스(Instances 또는 Records)의 무작위 추출(Random Sampling)을 이용하여 이 요소선택