검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1

        1.
        2009.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Silicon carbide (SiC) is a promising material for power device applications due to its wide band gap(3.26 eV for 4H-SiC), high critical electric field and excellent thermal conductivity. The Schottky barrier diodeis the representative high-power device that is currently available commercially. A field plate edge-terminated4H-SiC was fabricated using a lift-off process for opening the Schottky contacts. In this case, Ni/Ti dual-metalcontacts were unintentionally formed at the edge of the Schottky contacts and resulted in the degradation ofthe electrical properties of the diodes. The breakdown voltage and Schottky barrier height (SBH, ΦB) was 107V and 0.67eV, respectively. To form homogeneous single-metal Ni/4H-SiC Schottky contacts, a deposition andetching method was employed, and the electrical properties of the diodes were improved. The modified SBDsshowed enhanced electrical properties, as witnessed by a breakdown voltage of 635V, a Schottky barrier heightof ΦB=1.48eV, an ideality factor of n=1.04 (close to one), a forward voltage drop of VF=1.6V, a specific onresistance of Ron=2.1mΩ-cm2 and a power loss of PL=79.6Wcm-2.
        4,000원