검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6

        1.
        2016.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We present the rectifying and nitrogen monoxide (NO) gas sensing properties of an oxide semiconductor heterostructure composed of n-type zinc oxide (ZnO) and p-type copper oxide thin layers. A CuO thin layer was first formed on an indium-tin-oxide-coated glass substrate by sol-gel spin coating method using copper acetate monohydrate and diethanolamine as precursors; then, to form a p-n oxide heterostructure, a ZnO thin layer was spin-coated on the CuO layer using copper zinc dihydrate and diethanolamine. The crystalline structures and microstructures of the heterojunction materials were examined using X-ray diffraction and scanning electron microscopy. The observed current-voltage characteristics of the p-n oxide heterostructure showed a non-linear diode-like rectifying behavior at various temperatures ranging from room temperature to 200 oC. When the spin-coated ZnO/CuO heterojunction was exposed to the acceptor gas NO in dry air, a significant increase in the forward diode current of the p-n junction was observed. It was found that the NO gas response of the ZnO/CuO heterostructure exhibited a maximum value at an operating temperature as low as 100 oC and increased gradually with increasing of the NO gas concentration up to 30 ppm. The experimental results indicate that the spin-coated ZnO/CuO heterojunction structure has significant potential applications for gas sensors and other oxide electronics.
        4,000원
        2.
        2015.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We present an excellent detection for nitrogen monoxide (NO) gas using polycrystalline ZnO wire-like films synthesized via a simple method combined with sputtering of Zn metallic films and subsequent thermal oxidation of the sputtered Zn nanowire films in dry air. Structural and morphological characterization revealed that it would be possible to synthesize polycrystalline hexagonal wurtzite ZnO films of a wire-like nanostructure with widths of 100-150 nm and lengths of several microns by controlling the sputtering conditions. It was found from the gas sensing measurements that the ZnO wirelike thin film gas sensor showed a significantly high response, with a maximum value of 29.2 for 2 ppm NO at 200 oC, as well as a reversible fast response to NO with a very low detection limit of 50 ppb. In addition, the ZnO wire-like thin film gas sensor also displayed an NO-selective sensing response for NO, O2, H2, NH3, and CO gases. Our results illustrate that polycrystalline ZnO wire-like thin films are potential sensing materials for the fabrication of NO-sensitive high-performance gas sensors.
        4,000원
        3.
        2015.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We present the detection characteristics of nitrogen monoxide(NO) gas using p-type copper oxide(CuO) thin film gas sensors. The CuO thin films were fabricated on glass substrates by a sol-gel spin coating method using copper acetate hydrate and diethanolamine as precursors. Structural characterizations revealed that we prepared the pure CuO thin films having a monoclinic crystalline structure without any obvious formation of secondary phase. It was found from the NO gas sensin measurements that the p-type CuO thin film gas sensors exhibited a maximum sensitivity to NO gas in dry air at an operating temperature as low as 100 oC. Additionally, these CuO thin film gas sensors were found to show reversible and reliable electrical response to NO gas in a range of operating temperatures from 60 oC to 200 oC. It is supposed from these results that the ptype oxide semiconductor CuO thin film could have significant potential for use in future gas sensors and other oxide electronics applications using oxide p-n heterojunction structures.
        4,000원
        4.
        2014.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We report the nitrogen monoxide (NO) gas sensing properties of p-type CuO-nanorod-based gas sensors. We synthesized the p-type CuO nanorods with breadth of about 30 nm and length of about 330 nm by a hydrothermal method using an as-deposited CuO seed layer prepared on a Si/SiO2 substrate by the sputtering method. We fabricated polycrystalline CuO nanorod arrays at 80˚C under the hydrothermal condition of 1:1 morality ratio between copper nitrate trihydrate [Cu(NO2)2·3H2O] and hexamethylenetetramine (C6H12N4). Structural characterizations revealed that we prepared the pure CuO nanorod array of a monoclinic crystalline structure without any obvious formation of secondary phase. It was found from the gas sensing measurements that the p-type CuO nanorod gas sensors exhibited a maximum sensitivity to NO gas in dry air at an operating temperature as low as 200˚C. We also found that these CuO nanorod gas sensors showed reversible and reliable electrical response to NO gas at a range of operating temperatures. These results would indicate some potential applications of the p-type semiconductor CuO nanorods as promising sensing materials for gas sensors, including various types of p-n junction gas sensors.
        4,000원
        5.
        2013.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We investigated the detection properties of nitrogen monoxide (NO) gas using transparent p-type CuAlO2 thin film gas sensors. The CuAlO2 film was fabricated on an indium tin oxide (ITO)/glass substrate by pulsed laser deposition (PLD), and then the transparent p-type CuAlO2 active layer was formed by annealing. Structural and optical characterizations revealed that the transparent p-type CuAlO2 layer with a thickness of around 200 nm had a non-crystalline structure, showing a quite flat surface and a high transparency above 65 % in the range of visible light. From the NO gas sensing measurements, it was found that the transparent p-type CuAlO2 thin film gas sensors exhibited the maximum sensitivity to NO gas in dry air at an operating temperature of 180˚C. We also found that these CuAlO2 thin film gas sensors showed reversible and reliable electrical resistance-response to NO gas in the operating temperature range. These results indicate that the transparent p-type semiconductor CuAlO2 thin films are very promising for application as sensing materials for gas sensors, in particular, various types of transparent p-n junction gas sensors. Also, these transparent p-type semiconductor CuAlO2 thin films could be combined with an n-type oxide semiconductor to fabricate p-n heterojunction oxide semiconductor gas sensors.
        4,000원
        6.
        2012.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We report on the NO gas sensing properties of non-directional ZnO nanofibers synthesized using a typical electrospinning technique. These non-directional ZnO nanofibers were electrospun on an SiO2/Si substrate from a solution containing poly vinyl alcohol (PVA) and zinc nitrate hexahydrate dissolved in distilled water. Calcination processing of the ZnO/PVA composite nanofibers resulted in a random network of polycrystalline ZnO nanofibers of 50 nm to 100 nm in diameter. The diameter of the nanofibers was found to depend primarily on the solution viscosity; a proper viscosity was maintained by adding PVA to fabricate uniform ZnO nanofibers. Microstructural measurements using scanning electron microscopy revealed that our synthesized ZnO nanofibers after calcination had coarser surface morphology than those before calcination, indicating that the calcination processing was sufficient to remove organic contents. From the gas sensing response measurements for various NO gas concentrations in dry air at several working temperatures, it was found that gas sensors based on electrospun ZnO nanofibers showed quite good responses, exhibiting a maximum sensitivity to NO gas in dry air at an operating temperature of 200˚C. In particular, the non-directional electrospun ZnO nanofiber gas sensors were found to have a good NO gas detection limit of sub-ppm levels in dry air. These results illustrate that non-directional electrospun ZnO nanofibers are promising for use in low-cost, high-performance practical NO gas sensors.
        4,000원