The electron transport chain (ETC) delivers electrons from many substrates to reduce molecular oxygen to water. ETC accomplishes the stepwise transfer of electrons through series of protein complexes conferring oxidation‐reduction reactions with concomitant transport of p roton across membrane, g enerating a proton g radient which leads ATP s ynthesis b y F0F1ATPase. Bacterial ETC initiates with oxidation of NADH by NADH dehydrogenase complex (complex I). Therefore, damage of complex I leads to insufficient function of ETC and accumulation of NADH inside the cell. Contribution of ETC activity and its consequent changes of NADH levels to bacterial damage response against reactive oxygen and nitrogen species (ROS/RNS) has been poorly understood. In this study, by constructing ndh mutant Salmonella lacking complex I NADH dehydrogenase 2, we evaluated the effect of ETC deficiency to bacterial resistance against ROS and RNS. The growth of ndh mutant Salmonella is impaired in the culture media containing hydrogen peroxide, but rather accelerates in the media containing nitric oxide donors. Data suggest that redox potential of NADH accumulated inside the cell by ETC blockage may affect inversely to bacterial resistance against reactive oxygen species and reactive nitrogen species.
본 연구는 질소의 시비농도를 인위적으로 조절하여 잎들깨를 관비재배 하면서 질소의 시비수준이 생장과 결핍증상 발현에 미치는 영향을 구명하고, 생육을 우수하게 유지할 수 있는 식물체 및 토양의 한계농도를 밝히기 위하여 수행하였다. 질소 무시비구에서 지상부 식물생육의 심한 억제 현상과 노엽의 엽신 전체가 황화된 후 점차 괴사하는 결핍증상이 나타났다. 질소 시비농도가 높아질수록 정식 75일 후의 생체중과 건물중이 무거워졌고, 엽병 추출액의 NO3-N 농도와 토양 NO3-N 농도가 높아졌으나, 20mM 시비구에서는 질소과잉증상이 나타났다. 10~15mM 시비구에서 가장 바람직한 생장을 보였으며, 이때의 질소 함량은 건물중 기준으로 0.9~1.25%, 엽병추출액 및 1:2 추출법으로 분석한 토양의 NO3-N 농도가 각각 800~3,300mg·kg-1 및 28.7~47.3mg·L-1 범위에 포함되었다.