검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 33

        21.
        2019.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        High-level heteroatom, N and S, dual-doped graphene with an improved mesoporous structure was fabricated via facile in situ carbonization and used as metal-free cathode for non-aqueous lithium oxygen batteries. The prepared cathode delivered an ultrahigh specific capacity of 22,252 mAh/g at a current density of 200 mA/g as well as better cycling reversibility because of the larger and copious mesopores, which can promote the penetration of oxygen, electrons, and lithium ions and the ability to accommodate more discharge products, e.g., Li2O2, in Li–O2 batteries. The material had a high level of heteroatom co-doping in the carbon lattice, which enhanced the electrical conductivity and served as active sites for the oxygen reduction reaction.
        4,000원
        22.
        2019.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, nitrogen (N)-doped ultra-porous carbon derived from lignin is synthesized through hydrothermal carbonization, KOH activation, and post-doping process for CO2 adsorption. The specific surface areas of obtained N-doped porous carbons range from 247 to 3064 m2/g due to a successful KOH activation. N-containing groups of 0.62–1.17 wt% including pyridinic N, pyridone N, pyridine-N-oxide are found on the surface of porous carbon. N-doped porous carbon achieves the maximum CO2 adsorption capacity of 13.6 mmol/g at 25 °C up to 10 atm and high stability over 10 adsorption/desorption cycles. As confirmed by enthalpy calculation with the Clausius–Clapeyron equation, an adsorption heat of N-doped porous carbon is higher than non-doped porous carbon, indicating a role of N functionalities for enhanced CO2 adsorption capability. The overall results suggest that this carbon has high CO2 capture capacity and can be easily regenerated and reused without any clear loss of CO2 adsorption capacity.
        4,000원
        23.
        2019.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Comparisons between bare carbon (CPs) and nitrogen-doped carbon nanoparticles (N-CPs) synthesised using hydrothermal reaction are carried out. It was found that hydrothermal reaction of citric acid yields graphene-like sheets, while the nitrogen doping using ethylenediamine resulted in amorphous polymeric ball-like hydrocarbons devoid of any aromatic rings. Although the Fourier transform infrared spectroscopy, Raman spectroscopy and nuclear magnetic resonance spectroscopy indicate the presence of carbon–carbon double bonds (C=C), and the ground states of both materials are very deep (> 7.8 eV) as measured by ultraviolet photoelectron spectroscopy. This indicates the conjugation is very short. This is supported by the fact that both materials are UV blue emitting peaking at 375 nm probably originating from C=C.
        4,000원
        24.
        2018.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The design of non-precious electrocatalysts with low-cost, good stability, and an improved oxygen reduction reaction(ORR) to replace the platinium-based electrocatalyst is significant for application of fuel cells and metal-air batteries with high energy density. In this study, we synthesize iron-carbide(Fe3C) embedded nitrogen(N) doped carbon nanofiber(CNF) as electrocatalysts for ORRs using electrospinning, precursor deposition, and carbonization. To optimize electrochemical performance, we study the three stages according to different amounts of iron precursor. Among them, Fe3C-embedded N doped CNF-1 exhibits the most improved electrochemical performance with a high onset potential of −0.18 V, a high E1/2 of −0.29 V, and a nearly four-electron pathway (n = 3.77). In addition, Fe3C-embedded N doped CNF-1 displays exellent long-term stabillity with the lowest ΔE1/2= 8 mV compared to the other electrocatalysts. The improved electrochemical properties are attributed to synergestic effect of N-doping and well-dispersed iron carbide embedded in CNF. Consequently, Fe3C-embedded N doped CNF is a promising candidate for non-precious electrocatalysts for high-performance ORRs.
        4,000원
        25.
        2018.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Nitrogen (N)-doped protein-based carbon as platinum (Pt) catalyst supports from tofu for oxygen reduction reactions are synthesized using a carbonization and reduction method. We successfully prepare 5 wt% Pt@N-doped protein-based carbon, 10 wt% Pt@N-doped protein-based carbon, and 20 wt% Pt@N-doped protein-based carbon. The morphology and structure of the samples are characterized by field emission scanning electron microscopy and transmission electron micro scopy, and crystllinities and chemical bonding are identified using X-ray diffraction and X-ray photoelectron spectroscopy. The oxygen reduction reaction are measured using a linear sweep voltammogram and cyclic voltammetry. Among the samples, 10 wt% Pt@N-doped protein-based carbon exhibits exellent electrochemical performance with a high onset potential of 0.62 V, a high E1/2 of 0.55 V, and a low ΔE1/2= 0.32 mV. Specifically, as compared to the commercial Pt/C, the 10 wt% Pt@N-doped proteinbased carbon had a similar oxygen reduction reaction perfomance and improved electrochemical stability.
        4,000원
        26.
        2017.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper introduces a nitrogen-doped ordered mesoporous carbon (NOMC) derived from glucosamine with hybrid capacitive behaviors, achieved by successfully combining electrical double-layer capacitance with pseudo-capacitance behaviors. The nitrogen doping content of the fabricated NOMC reached 7.4 at% while its specific surface area (SBET) and total pore volume reached 778 m2 g−1 and 1.17 cm3 g−1, respectively. A dual mesoporous structure with small mesopores centered at 3.6 nm and large mesopores centered at 9.9 nm was observed. The specific capacitance of the reported materials reached up to 328 F g−1, which was 2.1 times higher than that of pristine CMK-3. The capacitance retention rate was found to be higher than 87.9% after 1000 charge/discharge cycles. The supplementary pseudocapacitance as well as the enhanced wettability and conductivity due to the incorporation of nitrogen heteroatoms within the carbon matrixes were found to be responsible for the excellent capacitive performance of the reported NOMC materials.
        4,000원
        27.
        2017.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nitrogen-doped carbon nanosheets with a developed porous structure were prepared from polyurethane foams by hydrothermal carbonization following ZnCl2 chemical activation. Scanning electron microscopy, thermogravimetric analysis, Fourier transform infrared spectroscopy, solid state 13C nuclear magnetic resonance (NMR) spectra and X-ray photoelectron spectroscopy were used to characterize the nitrogen-doped carbon nanosheet structure and composition. The removal of Cr(VI) by the N-doped carbon nanosheets was investigated. The results showed that the maximum removal capacity for chromium of 188 mg/g was found at pH=2.0 with PHC-Z-3. pH had an important effect on Cr(VI) removal and the optimal pH was 2.0. Moreover, amino groups and carboxyl groups in the nitrogen-doped carbon nanosheet played important roles in Cr(VI) removal, and promoted the reduction of Cr(VI) to Cr(III).
        4,000원
        28.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        N-doped carbon nanofibers as catalysts for oxygen-reduction reactions are synthesized using electrospinning and carbonization. Their morphologies, structures, chemical bonding states, and electrochemical performance are characterized. The optimized N-doped carbon nanofibers exhibit graphitization of carbon nanofibers and an increased nitrogen doping as well as a uniform network structure. In particular, the optimized N-doped carbon nanofibers show outstanding catalytic activity for oxygen-reduction reactions, such as a half-wave potential (E1/2) of 0.43 V, kinetic limiting current density of 6.2 mA cm-2, electron reduction pathways (n = 3.1), and excellent long-term stability after 2000 cycles, resulting in a lower E1/2 potential degradation of 13 mV. The improvement in the electrochemical performance results from the synergistic effect of the graphitization of carbon nanofibers and the increased amount of nitrogen doping.
        4,000원
        29.
        2016.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nitrogen-atom doped graphene oxide was considered to prevent the dissolution of polysulfide and to guarantee the enhanced redox reaction of sulfur for good cycle performance of lithium sulfur cells. In this study, we used urea as a nitrogen source due to its low cost and easy preparation. To find the optimum urea content, we tested three different ratios of urea to graphene oxide. The morphology of the composites was examined by field emission scanning electron microscope. Functional groups and bonding characterization were measured by X-ray photoelectron spectroscopy. Electrochemical properties were characterized by cyclic voltammetry in an organic electrolyte solution. Compared with thermally reduced graphene/sulfur (S) composite, nitrogen-doped graphene/S composites showed higher electroactivity and more stable capacity retention.
        4,000원
        31.
        2014.07 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nitrogen-doped microporous carbons were prepared using a polyvinylidene fluoridemelamine mixture. The electrochemical performance of the nitrogen-doped microporous carbons after being subjected to different carbonization conditions was investigated. The nitrogen to carbon ratio and specificsurface area decreased with an increase in the carbon-ization temperature. However, the maximum specificcapacitance of 208 F/g was obtained at a carbonization temperature of 800°C because it produced the highest microporosity.
        3,000원
        33.
        2012.11 KCI 등재 서비스 종료(열람 제한)
        To date, carbon and nitrogen co-doped photocatalysts (CN-TiO2) for environmental application focused mainly on the aqueous phase to investigate the decomposition of water pollutants. Accordingly, the present study explored the photocatalytic performance of CN-TiO2 photocatalysts for the purification of indoor-level gas-phase aromatic species under different operational conditions. The characteristics of prepared photocatalysts were investigated using X-ray diffraction, scanning emission microscope, diffuse reflectance UV-VIS-NIR analysis, and Fourier transform infrared (FTIR) analysis. In most cases, the decomposition efficiency for the target compounds exhibited a decreasing trend as input concentration (IC) increased. Specifically, the average decomposition efficiencies for benzene, toluene, ethyl benzene, and xylene (BTEX) over a 3-h process decreased from 29% to close to zero, 80 to 5%, 95 to 19%, and 99 to 32%, respectively, as the IC increased from 0.1 to 2.0 ppm. The decomposition efficiencies obtained from the CN-TiO2 photocatalytic system were higher than those of the TiO2 system. As relative humidity (RH) increased from 20 to 95%, the decomposition efficiencies for BTEX decreased from 39 to 5%, 97 to 59%, 100 to 87%, and 100 to 92%, respectively. In addition, as the stream flow rates (SFRs) decreased from 3.0 to 1.0 L min-1, the average efficiencies for BTEX increased from 0 to 58%, 63 to 100%, 69 to 100%, and 68 to 100%, respectively. Taken together, these findings suggest that three (IC, RH, and SFR) should be considered for better BTEX decomposition efficiencies when applying CN-TiO2 photocatalytic technology to purification of indoor air BTEX.
        1 2