This paper presents a periodic replacement policy for a system subject to shocks when the system is operating for a finite random horizon. The system is subject to shocks during operation, and each shock causes downgrading of the system performance and makes it more expensive to run by the additional running cost. Shocks arrive according to a nonhomogeneous or a renewal process, and we develop periodic replacement policies under a finite random operating horizon. The optimum periodic replacement interval which minimizes the total operating cost during the horizon is found. Numerical examples are presented to demonstrate the results.
This paper presents another maintenance policy for a group of units under finite operating horizon. A group of identical units are subject to random failures. Group maintenances are performed to all units together at specified intervals, and the failed units during operation are remained idle until the next group maintenance set-up. Unlike the traditional assumption of infinite operating horizon, we adopt the assumption of the finite operating horizon which reflect the rapid industrial advance and short life cycle of modern times. The units are under operation until the end of the operating horizon. Further, the operation of units are extended to the first group maintenance time after the end of the horizon. The total cost under the proposed maintenance policy is derived. The optimal group maintenance interval and the expected number of group maintenances during the horizon are found. It is shown that the proposed policy is better than the classical group maintenance policy in terms of total cost over the operating horizon. Numerical examples are presented for illustrations.