This paper focuses on scheduling problems arising in the military. In planned artillery attack operations, a large number of threatening enemy targets should be destroyed to minimize fatal loss to the friendly forces. We consider a situation in which the
The operation of vending machine system presents a decision-making problem which consists of determining the product allocation to vending-machine storage compartments, replenishment intervals of vending machines, and vehicle routes, all of which have cri
This dissertation focuses on scheduling problems arising in the military. In planned artillery attack operations, a large number of threatening enemy targets should be destroyed to minimize fatal loss to the friendly forces. We consider a situation in which the number of available weapons is smaller than the number of targets. Therefore it is required to develop a new sequencing algorithm for the unplanned artillery attack operation. The objective is to minimize the total loss of the targets, which is expressed as a function of the fire power potential, after artillery attack operations are finished. We develop a algorithm considering the fire power potential and the time required to destroy the targets. The algorithms suggested in this dissertation can be used in real artillery attack operations if they are modified slightly to cope with the practical situations.
본 연구의 목적은 금강수계의 가장 효율적인 가중치를 찾을 수 있는 절차를 제시하는 것이다. 일반적으로 다목적 최적화 모형의 결과는 목적함수에 부여된 가중치에 크게 좌우되는 경향이 있다. 특히 다목적 저수지 운영 문제의 경우는 어떤 유입량 시나리오가 적용되느냐에 따라 그에 적합한 가중치가 크게 달라질 수 있다. 따라서 유입량의 변동성을 감안해서 저수지 운영자에게 적합한 초기 가중치를 적용하는 것은 매우 큰 의미가 있다. 이에 본 연구는 유입량의 불확실성을