Background: Osteoarthritis is a common condition with an increasing prevalence and is a common cause of disability. Osteoarthritic pain decreases the quality of life, and simple gait training is used to alleviate it. Knee osteoarthritis limits joint motion in the sagittal and lateral directions. Although many recent studies have activated orthotic research to increase knee joint stabilization, no study has used patellar tendon straps to treat knee osteoarthritis.
Objects: This study aimed to determine the effects of patellar tendon straps on kinematic, mechanical, and electromyographic activation in patients with knee osteoarthritis.
Methods: Patients with knee osteoarthritis were selected. After creating the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), leg length difference, Q-angle, and thumb side flexion angle of the foot were measured. Kinematic, kinetic, and muscle activation data during walking before and after wearing the orthosis were viewed.
Results: After wearing the patellar tendon straps, hip adduction from the terminal stance phase, knee flexion from the terminal swing phase, and ankle plantar flexion angle increased during the pre-swing and initial swing phases. The cadence of spatiotemporal parameters and velocity increased, and step time, stride time, and foot force duration decreased.
Conclusion: Based on the results of this study, the increase in plantar flexion after strap wearing is inferred by an increase due to neurological mechanisms, and adduction at the hip joint is inferred by an increase in adduction due to increased velocity. The increase in cadence and velocity and the decrease in gait speed and foot pressure duration may be due to joint stabilization. It can be inferred that joint stabilization is increased by wearing knee straps. Thus, wearing a patellar tendon strap during gait in patients with knee osteoarthritis influences kinematic changes in the sagittal plane of the joint.
Background: Knee osteoarthritis (OA) diagnosis using Kellgren-Lawrence scores is commonly used to help decision-making during assessment of the severity of OA with assessment of pain, function and muscle strength. The association between Kellgren-Lawrence scores and functional/clinical outcomes remains controversial in patients with knee OA.
Objects: The purpose of this study was to examine the relationships between Kellgren-Lawrence scores and knee pain associated with OA, function during daily living and sports activities, quality of life, and knee muscle strength in patients with knee OA.
Methods: We recruited 66 patients with tibiofemoral knee OA and determined knee joint Kellgren-Lawrence scores using standing anteroposterior radiographs. Self-reported knee pain, daily living function, sports/recreation function, and quality of life were measured using the knee injury and OA outcome score (KOOS). Knee extensors and flexors were assessed using a handheld dynamometer. We performed Spearman’s rank correlation analyses to evaluate the relationships between Kellgren-Lawrence and KOOS scores or muscle strength.
Results: Kellgren-Lawrence scores were significantly negatively correlated with KOOS scores for knee pain, daily living function, sports/recreation function, and quality of life. Statistically significant negative correlations were found between Kellgren-Lawrence scores and knee extensor strength but not flexor strength.
Conclusion: Higher Kellgren-Lawrence scores were associated with more severe knee pain and lower levels of function in daily living and sports/recreation, quality of life, and knee extensor strength in patients with knee OA. Therefore, we conclude that knee OA assessment via self-reported KOOS and knee extensor strength may be a cost-effective alternative to radiological exams.
This study aimed to identify the effects of kinesio taping (KT) applied in a proprioceptive neuromuscular facilitation (PNF) pattern on the pain, weight-bearing distribution (WBD), and walking ability of knee osteoarthritis (KOA) patients. Thirty women with KOA were randomly allocated to a control group (n=15) with KT at the quadriceps only, and a PNF pattern group (n=15) with KT at the quadriceps and gastrocnemius muscle. Pain intensity was measured using a visual analogue scale during walking. In addition, WBD, and walking ability were measured before and 30 minutes after KT application. The VAS significantly reduced in both groups after the intervention (p<.05). WBD (p<.05, ES=.32) and walking ability (p<.05, ES=.38) showed a significant change in the PNF pattern group, and in the inter-group comparison, the PNF pattern group showed a significant difference compared to the control groups. These results demonstrate that KT application with PNF pattern effectively attenuate the pain and improves WBD and walking ability in KOA patients.
The purpose of this study was to identify the effects of mechanical traction applied to the knee joint on pain, knee range of motion (ROM), timed up and go (TUG) and Western Ontario and MacMaster Universities Osteoarthritis (WOMAC) in patients with knee osteoarthritis (KOA) of Kellgren-Lawrence radiological rating scale Ⅱ or Ⅲ. Twenty three patients participated in the experiment for a period of four weeks. After baseline assessment, the patients with KOA were randomized into two groups: the traction group (n1=12), which received traction with general physical therapy; and the control group (n2=11), which received general physical therapy only on unilateral knee joints. Patients received interventions once a day, three times a week, for four weeks. Wilcoxon signed-rank test was used to analyze the change of dependent variances within the group during pre and post intervention. Mann-Whitney U test was used to analyze the change of dependent variances as TUG and passive ROM between the two groups. Analysis of covariance was used to analyze the change of dependent variances as numeric pain rating scale (NPRS) and WOMAC score between the two groups. In Wilcoxon signed-rank test, the traction group improved significantly with regard to NPRS (p<.01), passive knee flexion ROM (p<.01), passive knee extension (p<.05), TUG (p<.01) and WOMAC scores (p<.01) after intervention for four weeks, but not for the control group. In the Mann-Whitney U test and analysis of covariance, no significant difference was seen among all the dependent variances after intervention for four weeks between the two groups. These outcomes suggest that further studies should be carried out to determine the effects of mechanical traction prior to using it for the treatment of patients with knee osteoarthritis.
The purpose of this study was to analyze and compare the effect of resistance exercise and balance exercise on proprioception and WOMAC index of patients with degenerative knee osteoarthritis. A total of 40 subjects participated in this study. The subjects were diagnosed with degenerative knee osteoarthritis and all were more than 60 years old. They were divided into three groups. Group Ⅰ(n=8) was trained with resistance exercise, Group Ⅱ(n=6) was trained with balance exercise and GroupⅢ(n=6) was trained with range of motion as a control. The results of this study were as follows. It was significantly indicated that the resistance exercise group and balance exercise group elicited error-reduction on proprioception goal-angle (p<.05). There was a statistically significant difference on proprioception between resistance exercise group and control(range of motion) group. There was a statistically significant reduction on WOMAC index between resistance exercise group and balance exercise group (p<.05) and on the WOMAC index between resistance exercise group and range of motion group(p<.05). In conclusion, resistance exercise and balance exercise are effective on degenerative knee osteoarthritis and resistance exercise is the most effective for improving proprioception and WOMAC index. More research on the intervention according to the degree of degenerative knee osteoarthritis is needed.
The purpose of this study was to examine the validity and reliability of the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC)-VA3.0 in patients with hip and knee osteoarthritis (OA). The sample consisted of 301 patients who had received treatments at the physical therapy units of 5 medical institutions in Andong City in june 2006. Questionnaires on the WOMAC were recruited by 12 physical therapists. The internal structure and reliability of the scales were evaluated by means of item-internal consistency (Cronbach's alpha coefficient: ), item-discriminant validity, and Pearson's relation coefficient. To explore construct validity, we conducted a principal component factor analysis with varimax rotation analysis. The criterion for factor extraction was an eigenvalue >1.0. The average age of the patients was 62.1 years. All WOMAC subscales (pain, stiffness, and physical function) were internally consistent with Cronbach's coefficients of .81, .91, and .80, respectively. The internal consistency reliability of item-each scale were also internally consistent with Cronbach's coefficient of .89 (Pearson's correlation coefficient: .71~.84), .93 (.89~.91), and .96 (.67~.91), respectively. However, high correlation was found among 3 items (.66~.83, .66~.67, and .67~.83), so the item-discriminant validity was low ( coefficient: .81, .91, .80, respectively). The construct validity by factor analysis was low because it was not consistent With WOMAC-VA3.0. In conclusion, the results reported here confirm the reliability of the WOMAC in patients with OA of the hip and knee. The collection of information on the hip and knee osteoarthritis using this instrument was acceptable to patients. A further prospective multi-center study will be necessary to prove the construct validity.
The Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) is a valid and widely used instrument for the assessment of osteoarthritis patients. In this study, data was obtained from the out-patients with painful osteoarthritis of the knee. One hundred-three out-patients were interviewed by physical therapists. In an exploratory way, a Korean version of the KWOMAC was analyzed for unidimensionality, item separation, and item difficulty using the Winsteps programs. Ninety-five patients with osteoarthritis of the knee over 65 years were analyzed for Rash analysis. In the analysis several functional items poorly fit to the model. These items included "heavy domestic duties" and "standing". In the pain domain, one item ("at night while in bed") did not fit the model. In the stiffness domain one item ("after sitting, lying, or resting later in the day") did not fit the model. Although 4 items from the 3 domains (pain, stiffness, function domain) do not fit well, the KWOMAC domains were confirmed by Rasch analysis. Thus the KWOMAC needs to be further examined before it can be used to properly determine the health status of the elderly with OA.
The quadriceps-angle (Q-angle) and the ratio of hamstring/quadriceps (H/Q) are important for the stability of the knee and for protection from excessive stress. The aim of this study was to examine the association between Q-angle and H/Q ratio with and without knee osteoarthritis. We compared knee osteoarthritis patients with symptom-free women. The mean age of the patients in the arthritis group (25 women, osteoarthritis) was 59.7 years. The non-arthritis group consisted of 25 women with a mean age of 55.2 years. Of the 25 women with osteoarthritis, 5 had the condition in their left knee, 5 had it in their right knee, and 15 had it on both sides. There was no significant difference in the knee Q-angle of the left and right knees of the arthritis group and the non-arthritis-group (p>.05). The strength of all the muscles around the involved right knee in the arthritis group was significantly weaker than that of the non-arthritis group (p<.05). However, in the left knee, only the strength of the knee extensors and internal rotators was significantly weaker than that of the non-arthritis group (p<.05). The Q-angle was not associated with the H/Q ratio and internal rotators/external rotators ratio of the involved knee in the arthritis group (p>.05). Neither was the Q-angle associated with the pain level of an involved knee in the arthritis group (p>.05). The knee pain was not associated with the H/Q ratio of the involved knee in the arthritis group (p>.05). The Q-angle was not associated with the ratio of H/Q and pain level of the involved knee in the osteoarthritis women.