검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, we presented a hybrid composite of graphene quantum dots (GQDs)-modified three-dimensional graphene nanoribbons (3D GNRs) composite linked by Fe3O4 and CoO nanoparticles through reflux and ultrasonic treatment with GQDs, denoted as 3D GQDs-Fe3O4/CoO@GNRs (3D GFCG). In this hybrid, the 3D GNRs framework strengthened the electrical conductivity and the synergistic effects between GQDs and 3D GFCG enhanced the oxygen reduction reaction (ORR) activity of the nanocomposite. The results imply that decorating GQDs with other electro-catalysts is an effective strategy to synergistically improve their ORR activity.
        4,000원
        2.
        2021.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The reaction between Li2CO3 and Cl2 was investigated to verify its occurrence during a carbon-anode-based oxide reduction (OR) process. The reaction temperature was identified as a key factor that determines the reaction rate and maximum conversion ratio. It was found that the reaction should be conducted at or above 500℃ to convert more than 90% of the Li2CO3 to LiCl. Experiments conducted at various total flow rate (Q) / initial sample weight (W i) ratios revealed that the reaction rate was controlled by the Cl2 mass transfer under the experimental conditions adopted in this work. A linear increase in the progress of reaction with an increase in Cl2 partial pressure (pCl2) was observed in the pCl2 region of 2.03–10.1 kPa for a constant Q of 100 mL∙min−1 and W i of 1.00 g. The results of this study indicate that the reaction between Li2CO3 and Cl2 is fast at 650℃ and the reaction is feasible during the OR process.
        4,000원
        4.
        2010.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        고온 용융염 전해환원 공정은 후행핵연료 주기의 대안 공정인 파이로공정의 산화물 사용후핵연료의 확대 를 위해 필수적인 공정이다. 사용후핵연료는 다성분 산화물로 이루어져 있으며 각 산화물은 전해환원 공정 에서 화학적 특성에 따라 산소를 잃게 된다. 본 연구에서는 건식분말화 공정 이후 전해환원 반응기에 도입되 는 사용후핵연료 조성을 기준으로 각 금속-산소 시스템을 독립적인 이상고용체로 가정하여 전해환원 반응거동을 계산하였다. 전해환원을 Li의 환원과 이어지는 Li과의 화학반응의 결합으로 산정하여 U을 비롯한 금 속 환원 거동을 계산하였다. 계산결과 대부분의 산화물들은 전해환원 공정에 의해 금속으로 전환되는 것으 로 예상되었다. 란타나이드 원소들의 경우 Li2O의 농도가 낮아지면 금속 전환율이 높아지나 대부분 산화물로 존재하는 것으로 나타났다. 추가적으로 U3O8의 전해환원 거동에 대해 Li의 확산과 Li과의 화학반응을 고려하 여 반실험적 모델이 제시되었다. 실험데이터를 활용하여 매개변수를 결정하였으며 시간에 대한 환원율 및 전류에 대한 99.9% 환원 시간을 계산하였다.
        4,600원