The electron transport chain (ETC) delivers electrons from many substrates to reduce molecular oxygen to water. ETC accomplishes the stepwise transfer of electrons through series of protein complexes conferring oxidation‐reduction reactions with concomitant transport of p roton across membrane, g enerating a proton g radient which leads ATP s ynthesis b y F0F1ATPase. Bacterial ETC initiates with oxidation of NADH by NADH dehydrogenase complex (complex I). Therefore, damage of complex I leads to insufficient function of ETC and accumulation of NADH inside the cell. Contribution of ETC activity and its consequent changes of NADH levels to bacterial damage response against reactive oxygen and nitrogen species (ROS/RNS) has been poorly understood. In this study, by constructing ndh mutant Salmonella lacking complex I NADH dehydrogenase 2, we evaluated the effect of ETC deficiency to bacterial resistance against ROS and RNS. The growth of ndh mutant Salmonella is impaired in the culture media containing hydrogen peroxide, but rather accelerates in the media containing nitric oxide donors. Data suggest that redox potential of NADH accumulated inside the cell by ETC blockage may affect inversely to bacterial resistance against reactive oxygen species and reactive nitrogen species.
It prepared the TiO2 powder which has photo-catalytic activity in the visible-light by the wet process with titanium oxysulfate. The titanium dioxide(TiO2) by the wet process creates a new absorption band in the visible light region, and is expected to create photocatalytic activity in this region. Anatase TiO2 powder which has photocatalytic activity in the visible light region, is treated using microwave and radio-frequency(RF) plasma. But, the TiO2 powder for the visible light region, which also can be easily produced by wet process. The wet process TiO2 absorbed visible light between 400nm and 600nm, and showed a high activity in this region, as measured by the oxidation removal of aceton from the gas phase. The AH-380 sample appears the yellow color to be strong, the catalytic activity in the visible ray was excellent in comparison with the plasma-treated TiO2. The AH-380 TiO2 powder, which can be easily produced on a large scale, is expected to have higher efficiency in utilizing solar energy than the plasma-treated TiO2 powder.