Radioactive liquid waste generated during the operation of domestic nuclear power plants is treated through a somewhat different liquid radwaste system (LRS) for each plant. Prior to the introduction of standard nuclear power plants, LRS used a concentrated water dry system (CWDS) to evaporate liquid waste and manage it in the form of dry powder. The boron-containing radioactive liquid waste dry powder was solidified using paraffin from 1995 to 2010, and about 3,650 drums (based on 200 L) of paraffin solidified drums are currently stored in nuclear power plants. Paraffin solidification drums do not meet the acceptance criteria for radioactive waste repositories because it is difficult to secure the homogeneity of the solidified body and there are concerns about leaching of radioactive waste due to the low melting point of paraffin. In order to solve this problem and safely permanently dispose of paraffin solidification drums, the characteristics of dry powder paraffin solidification drums containing boron-containing radioactive liquid waste must be analyzed and appropriate treatment technology utilizing the results must be introduced. This study analyzes the physical properties of paraffin, the chemical properties of boron-containing radioactive waste dry powder, and the physicochemical properties of paraffin solidification powder, and proposes an appropriate alternative technology for treating boron-containing radioactive waste dry drum. When disposing of the paraffin solidification drum with boron-containing radioactive liquid waste dry powder, the solidification body must be effectively withdrawn from the drum and the paraffin must be completely separated from the solidification body. When disposing the drum, the solidified material must be effectively extracted from the drum and the paraffin must be completely separated from the solidified material. Afterwards, the paraffin must be self-disposed, and the radioactive waste must be disposed of in accordance with acceptance criteria of repository. We looked at how each characteristic of the paraffin solidification drum with boron-containing radioactive liquid waste dry powder can be utilized in each of the above treatment processes.
Nuclear power plants in Korea stores approximately 3,800 drums of paraffin solidification products. Due to the lack of homogeneity, these solidification products are not allowed to be disposed of. There is therefore a need for the separation of paraffin from the solidification products. This work developed an equipment for a selective separation of paraffin from the solidification product using the vacuum evaporation and condensational recovery method in a closed system. The equipment mainly consists of a vacuum evaporator and a condensational deposition recovery chamber. Nonisothermal vacuum TGAs, kinetic analyses and kinetic predictions were conducted to set appropriate operation conditions. Its basic operability under the established conditions was first confirmed using pure paraffin solid. Simulated paraffin solidification product fixing dried boric acid waste including nonradioactive Co and Cs were then fabricated and tested for the capability of selective separation of paraffin from the simulated waste. Paraffin was selectively separated without entertainment of Co and Cs. It was confirmed that the developed equipment could separate and recover paraffin in the form of nonradioactive waste.