검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2021.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : This study uses deep learning image classification models and vehicle-mounted cameras to detect types of pavement distress — such as potholes, spalling, punch-outs, and patching damage — which require urgent maintenance. METHODS : For the automatic detection of pavement distress, the optimal mount location on a vehicle for a regular action camera was first determined. Using the orthogonal projection of obliquely captured surface images, morphological operations, and multi-blob image processing, candidate distressed pavement images were extracted from road surface images of a 16,036 km in-lane distance. Next, the distressed pavement images classified by experts were trained and tested for evaluation by three deep learning convolutional neural network (CNN) models: GoogLeNet, AlexNet, and VGGNet. The CNN models were image classification tools used to identify and extract the combined features of the target images via deep layers. Here, a data augmentation technique was applied to produce big distress data for training. Third, the dimensions of the detected distressed pavement patches were computed to estimate the quantity of repair materials needed. RESULTS : It was found that installing cameras 1.8 m above the ground on the exterior rear of the vehicle could provide clear pavement surface images with a resolution of 1 cm per pixel. The sensitivity analysis results of the trained GoogLeNet, AlexNet, and VGGNet models were 93 %, 86 %, and 72 %, respectively, compared to 62.7 % for the dimensional computation. Following readjustment of the image categories in the GoogLeNet model, distress detection sensitivity increased to 94.6 %. CONCLUSIONS : These findings support urgent maintenance by sending the detected distressed pavement images with the dimensions of the distressed patches and GPS coordinates to local maintenance offices in real-time.
        4,000원
        2.
        2018.05 구독 인증기관·개인회원 무료
        Three CNN (Convolutional Neural Network) models of GoogLeNet, VGGNet, and Alexnet were evaluated to select the best deep learning based image analysis mothod that can detect pavement distresses of pothole, spalling, and punchout on expressway. Education data was obtained using pavement surface images of 11,056km length taken by Gopro camera equipped with an expressway patrol car. Also, deep learning framework of Caffe developed by Berkeley Vision and Learning Center was evaluated to use the three CNN models with other frameworks of Tensorflow developed by Google, and CNTK developed by Microsoft. After determing the optimal CNN model applicable for the distress detection, the analyzed images and corresponding GPS locations, distress sizes (greater than distress length of 150mm), required repair material quantities are trasmitted to local maintenance office using LTE wireless communication system through ICT center in Korea Expressway Corporation. It was found out that the GoogLeNet, AlexNet, and VGG-16 models coupled with the Caffe framework can detect pavement distresses by accuracy of 93%, 86%, and 72%, respectively. In addition to four distress image groups of cracking, spalling, pothole, and punchout, 22 different image groups of lane marking, grooving, patching area, joint, and so on were finally classified to improve the distress detection rate.
        3.
        2019.10 서비스 종료(열람 제한)
        본 연구에서는 신속하고 편리한 고속도로 유지관리를 위해 주행 중인 차량에서 실시간으로 영상을 수집하고 분석하여 현장의 노면 포장 상태를 모니터링하고 손상을 탐지하는 딥러닝 기반의 고속도로 포장 손상 조사 기술에 대해 소개한다.