PURPOSES : Most Red bus1) (metropolitan bus) routes to Seoul need to increase supply by increasing the number of buses and number of trips because of the high level of congestion in buses, which also accommodate standing passengers. Due to the recent Itaewon disaster, people have been banned from standing on Red buses due to concerns over the excessive use of public transportation, adding to the inconvenience of passengers, such as increased travel time. However, some routes incur a large deficit owing to excess vehicles and trips relative to the number of passengers, thereby increasing the financial burden of Gyeonggi. Therefore, in this study, a reasonable operation plan is required based on the demand on Red bus routes. METHODS : Using accurate data from smart cards and a Bus Management System, the model was applied to consider bus usage, bus arrival distribution, waiting time, and operating conditions, such as actual bus usage time and bus dispatch interval. RESULTS : As a result of applying the model, buses between 7:00 and 9:00 and 16:00 and 18:00 were very crowded because of standing passengers, and passenger inconvenience costs decreased because of the longer waiting times for bus stops in Seoul. Currently, there are 15 buses in operation for the red bus G8110. However, considering the annual transportation cost, transportation income, and support fund limit, up to 12 buses can be operated per day. The G8110 route was analyzed at 23.6 million won for passenger discomfort cost, as 15 buses operated 97 times per day on weekdays. However, when establishing optimal scheduling, 12 buses per day operated 75 times per day, with a 19.7 million won passenger discomfort cost. CONCLUSIONS : As all red buses run from the starting point, passengers at the bus stop wait for more than an hour before entering Seoul, and the passenger discomfort cost of using demand-responsive chartered buses decreases only when commuting from Jeongja Station and Namdaemun Tax Office stops. Currently, many people commuting from Gyeonggi-do to Seoul are experiencing significant inconvenience owing to the ban on standing in Red buses; a suitable level of input can be suggested for the input and expansion of chartered buses.
There are many pollutants emitted into the air. Some of these pollutants have a malodor. Unlike other pollutants, people are able to detect and feel discomfort when this type of pollutant becomes high peak concentration instantaneously. In this sense, the peak concentration has an important meaning in the odor management and modeling. In previous odor modeling, the peak concentration was calculated by correcting the one-hour average concentration using the correlation equation. This study was carried out to find appropriate method to predict the peak concentration using meteorological input data of high time resolution in the odor modeling. It show that the peak concentration could be directly calculated from the dispersion modeling without using the correction equation when fine time scales such as 1 min or less time intervals are used as the meteorological input.