검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6

        1.
        2023.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Phytohormones (plant hormones) are a class of small-molecule organic compounds synthesized de novo in plants. Although phytohormones are present in trace amounts, they play a key role in regulating plant growth and development, and in response to external stresses. Therefore, the analysis and monitoring of phytohormones have become an important research topic in precision agriculture. Among the various detection methods, electrochemical analysis is favored because of its simplicity, rapidity, high sensitivity, and in-situ monitoring. Graphene and graphene-like carbon materials have abundant sources, exhibiting large specific surface area, and excellent physicochemical properties. Thus, they have been widely used in the preparation of electrochemical biosensors for phytohormone detection. In this paper, the research advances of electrochemical sensors based on graphene and graphene-like carbon materials for phytohormone detection have been reviewed. The properties of graphene and graphene-like carbon materials are first introduced. Then, the research advances of electrochemical biosensors (including conventional electrochemical sensors, photoelectrochemical sensors, and electrochemiluminescence sensors) based on graphene and graphene-like carbon materials for phytohormone detection is summarized, with emphasis on their sensing strategies and the roles of graphene and graphene-like carbon materials in them. Finally, the development of electrochemical sensors based on graphene and graphene-like carbon materials for phytohormone detection is prospected.
        4,900원
        4.
        2011.02 KCI 등재 서비스 종료(열람 제한)
        Low temperature stress is one of the major negative factors affecting vegetative and reproductive growth of rice. To better understand responses of rice plants to low temperature we analyzed transcriptome expression patterns in glumous flower of cold-tolerant japonica rice variety, Stejaree45, and cold-susceptible variety, HR19621-AC6 at booting stage under cold water irrigation. A total of 2,411 probes were differentially expressed by low temperature in glumous flowers of the two varieties. Some important genes involved in hormone biosynthesis showed variety-specific regulation. Expression of GA20ox3 and GA2ox, among the genes involved in GA biosynthesis, was regulated differentially in the two varieties. Among the genes involved in IAA biosynthesis, YUCCA1 and TAA1:1 showed variety-specific regulation. Among the genes involved in cytokinin biosynthsis and signaling, expression of LOG, HK1 and HK3 was significantly down-regulated only in the cold-susceptible variety. Among the genes involved in ABA biosynthesis, NSY and AAO3 were down-regulated only in the cold-tolerant variety. In general, genes involved in GA, IAA and cytokinin biosynthesis responded to cold temperature in such a way that capacity of those bioactive hormones is maintained at relatively higher levels under cold temperature in the cold-tolerant variety, which can help minimize cold stress imposed to developing reproductive organs in the cold-tolerant variety.
        5.
        2005.09 KCI 등재 서비스 종료(열람 제한)
        Ascorbate peroxidase (APX) plays a crucial role in the detoxification of hydrogen peroxide. APX activity is maintained significantly higher in the paraquat­treated leaves of the paraquat-tolerant Rehmannia glutinos. This study was conducted to understand structural and regulatory characteristics of APX gene in R. glutinosa. A putative APX cDNA clone (RgAPX1) was isolated from a leaf cDNA library using a partially sequenced expressed sequence tag clone. RgAPX1 is consisted of 1148 bp nucleotides and contains an open reading frame encoding a 250 amino acid-long polypeptide. Deduced RgAPX1 amino acid sequence shares higher sequence similarity to cytosolic APXs. RgAPX1. expression was higher in the leaf than in the flower and root. Southern blot result indicates the presence of one or two RgAPX1-related genes in R. glutinosa genome. RgAPX1 transcription was affected differentially by various stresses and phytohormone. The results indicate that RgAPXl is constitutively expressed in most tissues and its expression is modulated for the immediate and efficient detoxification of H2O2 under normal and stress conditions.