In this study, we investigated the effect of the residual carbides and tempered carbides precipitated by tempering treatment after quenching on the pitting corrosion of mod. 440A martensitic stainless steel. In quenched specimens and tempered specimens after quenching of mod. 440A martensitic stainless steel, the volume fraction of the residual carbides and total carbides decreased with the increase of the austenitizing temperature. Pitting resistance increased with the increase of austenitizing temperature. With the increase of the volume fraction of the residual and total carbides, the pitting resistance of mod. 440A martensitic stainless steel was decreased. The pitting resistance of mod. 0.5C-17Cr-0.5Ni 440A martensitic stainless steel had stronger affected by residual carbides than precipitated carbides produced by tempering.
In this study, we investigated the precipitation behavior of the R-phase precipitated at the initial stage of aging and its effect on the pitting corrosion of 25%Cr-7%Ni-4%Mo super duplex stainless steel. The R-phase in super duplex stainless steel was mainly precipitated at the interface of ferrite/austenite phases and inside of the ferrite phase during the initial stage of aging, and it was transformed into the σ-phase with an increase in aging time. The ferrite phase was decomposed into a new austenite phase and σ-phase. The R phase was an intermetallic compound, which represented a lower Ni and higher Mo than the matrix, and also had a higher Mo and Cr concentration than the σ phase. With an increasing aging time, the pitting potential Ep was increased slowly by the precipitation of the R-phase, and it was then steeply decreased by the precipitation of the σ-phase. The R-phase was decreased the pitting potential, but its effect was smaller than effect of σ-phase.
The fundamental experiments on the phosphorus removal from water were carried out by the batch and continuous reactors which used aluminium and copper plate. In this systems, the phosphorus was removed by aluminium ion generated with the electrochemical interaction (pitting corrosion) of aluminium and copper. In the batch experiments, the efficiencies of phosphorus removal increased when the surfaces of aluminium and copper plate were brushed. The phosphorus removal by aluminium ion was affected the copper plate and NaCl in this system. The optimal pH values were 5 and 6 for the phosphorus removal. The efficiency of phosphorus removal increased with increasing NaCl concentration, surface area of aluminium and copper plate. The CuSO4·5H2O instead of copper plate could be used as Cu source. The effluent PO4-P concentration as low as 2㎎/ℓ could have been obtained during the continuous experiment at HRT of 48 hrs.