검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 8

        1.
        2023.05 구독 인증기관·개인회원 무료
        Air conditioning facilities in nuclear power plants use pre-filters, HEPA filters, activated carbon filters, and bag filters to remove radionuclides and other harmful substances in the atmosphere. Spent filters generate more than 100 drums per year per a nuclear power plant and are stored in temporary radioactive waste storage. Plasma torch melting technology is a method that can dramatically reduce volume by burning and melting combustible, non-flammable, and mixed wastes using plasma jet heat sources of 1,600°C or higher and arc Joule heat using electric energy, which is clean energy. KHNP CRI & KPS are developing and improving waste treatment technology using MW-class plasma torch melting facilities to stably treat and reduce the volume of radioactive waste. This study aims to develop an operation process to reduce the volume of bag filter waste generated from the air conditioning system of nuclear power plants using plasma torch melting technology, and to stably treat and dispose of it. It is expected to secure stability and reduce treatment costs of regularly generated filter waste treatment, and contribute to the export of radioactive waste treatment technology by upgrading plasma torch melting technology in the future.
        2.
        2023.05 구독 인증기관·개인회원 무료
        Plasma melting technology is a high-temperature flame of about 1,600°C or higher generated using electrical arc phenomena such as lightning, and radioactive waste generated during the operation and dismantling of nuclear power plants is not classified according to physical characteristics. It is a technology that can meet waste disposal requirements through treatment and reduction. Plasma torch melting technology was used for volume reduction and stable treatment of HVAC filters generated from nuclear power plants HVAC (Heating Ventilation and Air Conditioning). filter was treated by placing 1 to 3 EA in a drum and injecting it into a plasma melting furnace at 1,500°C, and the facility was operated without abnormal stop. A total of 132.5 kg of filter was treated, and the high-temperature melt was normally discharged four times. It was confirmed that the plasma torch melting facility operates stably at 500 LPM of nitrogen and 370-450 A of current during filter treatment. Through this study, the possibility of plasma treatment of filters generated at nuclear power plants has been confirmed, and it is expected that stable disposal will be possible in the future.
        3.
        2023.05 구독 인증기관·개인회원 무료
        By developing plasma torch melting technology in 1996, our company has developed the first generation 150 kW (’96~’02), the second generation 500 kW (’08~’12), and the third generation MW plasma torch melting facility (’14~’18), and completed facility upgrading (’20~’23). The MW plasma torch melting facility is equipped with CCTV to monitor waste input, melting, torch integrity, and melt discharge. The lens is installed inside a metal housing made of stainless steel to prevent damage caused by external impacts and high temperatures, and supplies nitrogen to prevent cooling and lens contamination. As a result of the demonstration test, as the temperature inside the melting furnace increased after starting the plasma torch, the resolution decreased along with noise in the CCTV, and facility monitoring was difficult due to high temperatures and foreign substances (fume). Based on the test results, CCTV was changed to a non-insertion type that was not directly exposed to high temperatures, and a filter (quartz) was additionally applied to monitor the melt smoothly. As a result of applying the newly manufactured CCTV to the demonstration test, smooth monitoring ability was confirmed even at normal operating temperature (above 1,500°C). Through this facility improvement, the operation convenience of the plasma torch melting facility has been secured, and it is expected that it will be able to operate stably during long-term continuous operation in the future.
        4.
        2022.10 구독 인증기관·개인회원 무료
        The liquid radioactive waste system of nuclear power plants treats radioactive contaminated wastes generated during the Anticipated Operational Occurrence (AOO) and normal operation using filters, ion exchange resins, centrifuges, etc. When the contaminated waste liquid is transferred to an ion exchanger filled with cation exchange resin and anion exchange resin, nuclides such as Co and Cs are removed and purified. The lifespan and replacement time of the ion exchange resin are determined by performing a performance test on the sample collected from the rear end of the ion exchanger, and waste ion exchange resin is periodically generated in nuclear power plants. In the general industry, most waste resins at the end of their lifespan are incinerated in accordance with related laws, but waste resins generated from nuclear power plants are disposed of by clearance or stored in a HIC (High Integrity Container). Plasma torch melting technology can reduce the volume of waste by using high-temperature heat (about 1,600 degrees) generated from the torch due to an electric arc phenomenon such as lightning, and secure stability suitable for disposal. Plasma torch melting technology will be used to check thermal decomposition, melting, exhaust gas characteristics, and volume reduction at high temperatures, and to ensure disposal safety. Through this research, it is expected that the stable treatment and disposal of waste resins generated from nuclear power plants will be possible.
        5.
        2022.05 구독 인증기관·개인회원 무료
        Currently, KHNP has 24 operating nuclear power plant units with a toal combined capacity of about 23 GWe and two units are under construction. However, permanent stop of Kori unit 1 nuclear power plant was decided in 2017. Accordingly, interest in how to dispose of waste stored inside a permanently stopped nuclear power plant and waste generated as decommissioning process is increasing. KHNP CRI is conducting research on the advancement of plasma torch melting facilities for waste treatment generated during the plant decommissioning and operation period. Plasma torch melting facility is composed of various equipment such as a melting furnace (Melting chamber, Pyrolsis chamber), a torch, an exhaust system facility, a waste supply device, and other equipment. In demonstration test, concrete waste was put in a 200 L drum to check whether it can be pyrolyzed using a plasma torch melting facility. Reproducibility for waste treatment in the form of a 200 L drum and discharge of molten slag could be confirmed, the amount of concrete waste in 200 L Drum that could be treated according to power of plasma torch was confirmed. This demonstration test confirmed the field applicability and stability of plasma torch melting facility, and improved expectations for long-term operation.
        6.
        2022.05 구독 인증기관·개인회원 무료
        In nuclear power plants, insulation is used to protect equipment and block heat. Insulation materials include asbestos, glass fiber, calcium silicate, etc. Various types and materials are used. This study aims to ensure volume reduction and disposal safety by applying plasma torch melting technology to insulation generated at operating and dismantling nuclear power plants. After the evaluation of characteristics by securing thermal insulation materials or similar materials in use at the operational and dismantling nuclear power plant. It is planned to perform pyrolysis and melting tests using the MW plasma torch melting facility owned by KHNP CRI Before the plasma test, check the thermal decomposition and melting characteristics (fluidity, etc.) of the insulation in a 1,600°C high-temperature furnace. The insulation is stored in a 200 L drum and injected into a plasma facility, and the drum and the insulation are to be pyrolyzed and melted by the high temperature inside the plasma torch melting furnace. Through this test, thermal decomposition and melting of the insulation, solidification/ stabilization method, maximum throughput, and exhaust characteristics are confirmed at a high temperature (1,600°C) of the plasma torch. Through this study, it is expected that the stable treatment and disposal of insulation generated from operating and dismantling nuclear power plants will be possible.