Porous W with controlled pore structure was fabricated by thermal decomposition and hydrogen reduction process of PMMA beads and WO3 powder compacts. The PMMA sizes of 8 and 50 μm were used as pore forming agent for fabricating the porous W. The WO3 powder compacts with 20 and 70 vol% PMMA were prepared by uniaxial pressing and sintered for 2 h at 1200oC in hydrogen atmosphere. TGA analysis revealed that the PMMA was decomposed at about 400oC and WO3 was reduced to metallic W at 800oC. Large pores in the sintered specimens were formed by thermal decomposition of spherical PMMA, and their size was increased with increase in PMMA size and the amount of PMMA addition. Also the pore shape was changed from spherical to irregular form with increasing PMMA contents due to the agglomeration of PMMA in the powder mixing process.
This study was conducted to investigate the removal characteristics of heavy metals and sulfate ion from acid mine drainage by porous zeolite-slag ceramics (ZS ceramics) that was prepared by adding wood flour as pore-foaming agent while calcining the mixtures of natural zeolite and converter slag. The batch test showed that the removal efficiency of heavy metals by pellet-type porous ZS ceramics increased as the particle size of wood flour was decreased and as the weight mixing ratio of wood flour to ZS ceramics was increased. The optimal particle size and weight mixing ratio of wood flour were measured to be 75 ㎛ and 7∼10%, respectively. The removal test with the porous ZS ceramics prepared in these optimal condition showed very high removal efficiencies: more than 98.4% for all heavy metals and 73.9% for sulfate ion. Relative to nonporous ZS ceramics, the increment of removal efficiency of heavy metals by porous ZS ceramics with 75 ㎛ and 10% wood flour was 5.8%, 60.5%, 36.9%, 87.7%, 10.3%, and 57.4% for Al, Cd, Cu, Mn, Pb, and Zn, respectively. The mechanism analysis of removal by the porous ZS ceramics suggested that the heavy metals and sulfate ion from acid mine drainage are eliminated by multiple reactions such as adsorption and/or ion exchange as well as precipitation and/or co-precipitation.