Tool steels serve a large range of applications including hot and cold workings of metals and injection mouldings of plastics or light alloys. The high speed steels (HSS) are specifically used as cutting tools and wear parts because it has high strength, wear resistance and hardness along with appreciable toughness and fatigue resistance. From the view of HSS microstructure, it can be described as metallic matrix composites formed by a ferrous with a dispersion of hard and wear resistant carbides. The experimental specimens were manufactured using the PIM with T42 powders (50~80 vol.%) and polymer (20~50 vol.%). The green parts were debinded in n-hexane solution at for 8 hours and thermal debinded at an mixed gas atmosphere for 8 hours. Specimens were sintered in high vacuum ( Torr) and various temperatures.
It is well known that the powder injection molding(PIM) process can overcome the shape limitations of traditional powder compaction, the costs of machining, the productivity limits of isostatic pressing and slip casting, and the defect and tolerance limitations of conventional casting. Increasing demands from industry for not only the dimensional accuracy nut mechanical strength in PIMed parts have had much effort focused on the investigation of mechanical properties of mechanical strength in PIMed parts have had much effort focused on the investigation of mechanical properties of sintered parts formed with high-strength metallic powders. The 17_4 PH were injection-molded into flat tensile specimens. Sintering of the compacts was carried out at the various temperatures ranging from 900 to . Sintering behavior of the compacts and tensile properties of sintered specimens were investigated.