검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2011.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, powder metallurgy and severe plastic deformation by high-pressure torsion (HPT) approaches were combined to achieve both full density and grain refinement at the same time. Water-atomized pure iron powders were consolidated to disc-shaped samples at room temperature using HPT of 10 GPa up to 3 turns. The resulting microstructural size decreases with increasing strain and reaches a steady-state with nanocrystalline (down to ~250 nm in average grain size) structure. The water-atomized iron powders were deformed plastically as well as fully densified, as high as 99% of relative density by high pressure, resulting in effective grain size refinements and enhanced microhardness values.
        4,000원
        2.
        2011.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the current study, the effects of particle size on compaction behavior of water-atomized pure iron powders are investigated. The iron powders are assorted into three groups depending on the particle size; 20-45 , 75-106 , and 150-180 for the compaction experiments. The powder compaction procedures are processed with pressure of 200, 400, 600, and 800 MPa in a cylindrical die. After the compaction stage, the group having 150-180 of particle size distribution shows the best densification behavior and reaches the highest green density. The reason for these results can be explained by the largest average grain size in the largest particle group, due to the low plastic deformation resistance in large grain sized materials.
        4,000원
        3.
        1994.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The compacts of pure and phosphorus-coated iron powder with 0~0.8%C were sintered at for 40 min. in cracked ammonia gas atmosphere. The tensile and impact strengths were measured and the relationship of the results with carbon content, phosphorus, quenching and tempering was investigated. The results obtained can be summarized as follows : (1) The tensile strength of sintered compacts increased slowly with carbon content. Increase in tensile strength by heat treatment was evident especially in the low carbon specimen. The specimen with phosphorus showed higher strength compared to pure iron compacts value. (2) No inflection point of elasticplastic deformation on stress-strain curve was observed in sintered steel. The elastic modulus of sintered steel had the same tendency as tensile strength. But the elongation showed the opposite tendency. (3) The impact absorption energy of sintered steel without addition of phosphorus decreased successively with carbon content and by quenching and tempering. On the contrary, addition of phosphorus resulted in an increase of the impact absorption energy. Quenching and tempering did not affect the impact energy especially in high carbon content. (4) The main fracture source was pore in specimen and the propagation of crack occured mostly along the grain boundaries. But the intragranular fracture was also observed in high carbon, quenched and tempered specimen, and especially in the specimen with phosphorus.
        4,000원