검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 15

        1.
        2015.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, effect of core-shell structure on compaction behavior of harmonic powder is investigated. Harmonic powders are made by electroless plating method on Fe powders. Softer Cu shell encloses harder Fe core, and the average size of Fe core and thickness of Cu shell are 34.3 μm and 3.2 μm, respectively. The powder compaction procedure is processed with pressure of 600 MPa in a cylindrical die. Due to the low strength of Cu shell regions, the harmonic powders show better densification behavior compared with pure Fe powders. Finite element method (FEM) is performed to understand the roll of core-shell structure. Based on stress and strain distributions of FEM results, it is concluded that the early stage of powder compaction of harmonic powders mainly occurs at the shell region. FEM results also well predict porosity of compacted materials.
        4,000원
        2.
        2015.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In recent years, industrial demands for superior mechanical properties of powder metallurgy steel components with low cost are rapidly growing. Sinter hardening that combines sintering and heat treatment in continuous one step is cost-effective. The cooling rate during the sinter hardening process dominates material microstructures, which finally determine the mechanical properties of the parts. This research establishes a numerical model of the relation between various cooling rates and microstructures in a sinter hardenable material. The evolution of a martensitic phase in the treated microstructure during end quench tests using various cooling media of water, oil, and air is predicted from the cooling rate, which is influenced by cooling conditions, using the finite element method simulations. The effects of the cooling condition on the microstructure of the sinter hardening material are found. The obtained limiting size of the sinter hardening part is helpful to design complicate shaped components.
        4,000원
        3.
        2013.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Stress-strain curves are fundamental properties to study characteristics of materials. Flow stress curves of the powder materials are obtained by indirect testing methods, such as tensile test with the bulk materials and powder compaction test, because it is hard to measure the stress-strain curves of the powder materials using conventional uniax- ial tensile test due to the limitation of the size and shape of the specimen. Instrumented nanoindentation can measure mechanical properties of very small region from several nanometers to several micrometers, so nanoindentation tech- nique is suitable to obtain the stress-strain curve of the powder materials. In this study, a novel technique to obtain the stress-strain curves using the combination of instrumented nanoindentation and finite element method was introduced and the flow stress curves of Fe powder were measured. Then obtained stress-strain curves were verified by the com- parison of the experimental results and the FEA results for powder compaction test.
        4,000원
        4.
        2011.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, powder metallurgy and severe plastic deformation by high-pressure torsion (HPT) approaches were combined to achieve both full density and grain refinement at the same time. Water-atomized pure iron powders were consolidated to disc-shaped samples at room temperature using HPT of 10 GPa up to 3 turns. The resulting microstructural size decreases with increasing strain and reaches a steady-state with nanocrystalline (down to ~250 nm in average grain size) structure. The water-atomized iron powders were deformed plastically as well as fully densified, as high as 99% of relative density by high pressure, resulting in effective grain size refinements and enhanced microhardness values.
        4,000원
        5.
        2011.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Green strength is an important property of powders since high green strength guarantees easy and safe handling before sintering. The green strength of a powder compact is related to mainly mechanical and surface characters, governed by interlocking of the particles. In this study, the effect of powder surface roughness on the green strength of iron powders was investigated using a transverse rupture test. Three-dimensional laser profiler was employed for quantitative analyses of the surface roughness. Two different surface conditions, i.e. surface roughness, of powders were compared. The powders having rough surfaces show higher green strength than the round surface powders since higher roughness leads increasing interlocked area between the contacting powders.
        4,000원
        6.
        2011.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the current study, the effects of particle size on compaction behavior of water-atomized pure iron powders are investigated. The iron powders are assorted into three groups depending on the particle size; 20-45 , 75-106 , and 150-180 for the compaction experiments. The powder compaction procedures are processed with pressure of 200, 400, 600, and 800 MPa in a cylindrical die. After the compaction stage, the group having 150-180 of particle size distribution shows the best densification behavior and reaches the highest green density. The reason for these results can be explained by the largest average grain size in the largest particle group, due to the low plastic deformation resistance in large grain sized materials.
        4,000원
        7.
        2010.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, Cu-10Sn and Cu-10Sn-2Ni-0.2Si alloys have been manufactured by spray casting in order to achieve a fine scale microstructure and high tensile strength, and investigated in terms of microstructural evolution, aging characteristics and tensile properties. Spray cast alloys had a much lower microhardness than continuous cast billet because of an improved homogenization and an extended Sn solid solubility. Spray cast Cu-Sn-Ni-Si alloy was characterized by an equiaxed grain microstructure with a small-sized (Ni, Si)-rich precipitates. Cold rolling of Cu-Sn-Ni-Si alloy increased a tensile strength to 1220 MPa, but subsequent ageing treatment reduced a ultimate tensile strength to 780 MPa with an elongation of 18%.
        4,000원
        8.
        2000.06 구독 인증기관·개인회원 무료
        분무주조법으로 제조된 Al-25Si-(Fe,V) 합금빌렛의 미세조직을 광학현미경, 주사전자현미경, 투과전자현미경으로 분석하였으며, 빌렛내에서 관찰되는 2차상의 형성거동을 정확히 분석하기 위해 over-sprayed 분말의 미세조직을 분무주조 빌렛과 함께 관찰하였다. 먼저 분무주조 빌렛을 표면으로부터 중심부까지 관찰한 결과, 분무주조 빌렛의 미세조직은 표면부 10mm 가량을 제외하고는 매우 균일한 미세조직을 보여주었다. 이에 본 연구에서는 분무주조 빌렛의
        9.
        1997.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        High speed steels with commercial compositions of 10V, Rex20, Rex25, T15, and ASP30 were gas-atomized and then consolidated by hot isostatic pressing (HIPping). The microstructures of gas-atomized powder, as-HiPped billet, and heat-treated billet have been characterized using optical microscope, scanning electron microscope and X-ray diffractometer. In the gas-atomized powders, the solidification structures of 10V and Rex25 alloys show that primary MC carbides embedded within the fine equiaxed dendrites, whereas those of Rex20, T15 and ASP30 alloys exhibited eutectic MC and/or MC carbides in the interdendritic region. The trace and dendritic morphologies of gas-atomized powder have been retained in as-HiPped billets. The microstructures of as-HiPped billets have been observed to consist of ferrite, and MC carbides in other alloys with the exception of 10V alloy, which consists of ferrite and MC carbides. The hardness of heat-treated billet makes a favorable comparison with that of as-HIPped billet. This seems mainly to be due to the strengthening by the precipitation of secondary carbides and the change of matrix phase from -ferrite to martensite.
        4,000원
        15.
        1994.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to predict droplet velocity and temperature profiles and fractional solidification with flight distance during spray forming, the Newtonian heat transfer formulation has been coupled with the classical heterogeneous nucleation and the specific solidification process. It has been demonstrated that the thermal profile of the droplet in flight is significantly affected by process parameters such as droplet size, initial gas velocity, undercooling. As the droplet size and/or the initial gas velocity increase, the onset and completion of solidification are shifted to greater flight distances and the solidification process also extends over a wider range of flight distances. The amounts of solid fractions formed during recoalescence, segregated solidification and eutectic solidification are insensitive to droplet size and initial gas velocity whereas those are strongly affected by the degree of undercooling. There are good linear relations between the undercooling and the corresponding solid fractions generated during recoalesced, segregated and eutectic stages.
        4,000원