Reinforced concrete (RC) piloti buildings are vulnerable in the event of earthquake because the stiffness in the 1st story columns is weak to compare with the members in upper stories. In this study, seismic performances of RC piloti structures were evaluated considering with different types of floor plane layouts according to core eccentricity. With four types of floor plane layouts, five stories plioti structures were evaluated by two approaches, a nonlinear pushover analysis and a nonlinear time-history analysis. In order to improve seismic performances by satisfying the collapse prevention (CP) level, two ductile reinforcing methods by carbon fiber sheets and steel jackets were applied. Due to eccentricities in stiffness and mass with directions of plane and vertical stories, piloti structures were greatly influenced by higher order modes, so the seismic performances by the time-history analysis were significantly different from by the static pushover analysis.
Structures compromised by a seismic event may be susceptible to aftershocks or subsequent occurrences within a particular duration. Considering that the shape ratios of sections, such as column shape ratio (CSR) and wall shape ratio (WSR), significantly influence the behavior of reinforced concrete (RC) piloti structures, it is essential to determine the best appropriate methodology for these structures. The seismic evaluation of piloti structures was conducted to measure seismic performance based on section shape ratios and inter-story drift ratio (IDR) standards. The diverse machine-learning models were trained and evaluated using the dataset, and the optimal model was chosen based on the performance of each model. The optimal model was employed to predict seismic performance by adjusting section shape ratios and output parameters, and a recommended approach for section shape ratios was presented. The optimal section shape ratios for the CSR range from 1.0 to 1.5, while the WSR spans from 1.5 to 3.33, regardless of the inter-story drift ratios.