At the end of 2022 there were 439 nuclear power reactors in operating around the world, including 25 nuclear power reactors of Korea. Domestic nuclear power plants (NPPs) continuously produce low and intermediate-level radioactive waste (LILW) and spent nuclear fuel (SNF). As amount of radioactive waste is increasing and interim storage facilities meet limitation of their capacity, radioactive waste need to be transported. Consequently, the demand for radioactive waste transportation is increasing and the importance of Radiation Risk Assessment Codes (RRACs) for radioactive waste transportation is also on the rise. Considering the domestic situation where all NPPs are located on seaside, the radioactive waste transportation by ship is inevitable and the its risk assessment is very important for safety. Although various researches on radioactive waste transportation risk assessment is being actively conducted, research on domestic radioactive waste maritime transportation is insufficient. In this study, MARINRAD and KM-RAD were used to review on the radioactive waste transportation risk assessment. The result of reviewing shows that MARINRAD used SNF as transporting radioactive materials and ‘SAND87-7067 (1987)’ as nuclide database, whereas KMRAD used LILW and ‘IAEA Technical Report Series-422 (2004)’. To complement these limitations, we present an modernized integrated database by updating data and covering the radioactive materials from LILW to SNF. These results are expected to contribute to the development of RRACs for domestic radioactive waste maritime transportation.
RADTRAN is a code that assesses the radiation risk of radioactive material transportation. RADTRAN assumes that the package is a point source or a line source regardless of package type and corrects the external dose rate using a shape factor which depends on the critical dimension of the package. However, the external dose rate calculated using a shape factor may be different from the actual external dose rate. Therefore, it is necessary to analyze the effect of the shape factor on the external dose rate. In this study, the effect of the shape factor on the external dose rate in RADTRAN was analyzed by comparison with MCNP. This study analyzed change in external dose rate depending on the distance from the package and the critical dimension. The distance from the package was in the range of 1–800 m. The shape of the package was assumed to be cylindrical with a radius of 1 m, and the critical dimensions of the package were assumed to be 2, 4, and 8 m. Attenuation and build-up in the air were not considered to consider only the effect on the shape factor. When simulating the exposure situation using MCNP, the package was assumed to be a volume source, and flux by distance from the package was calculated using F5 tally. The dose rate at 1 m from the package was normalized to 2 mSv·hr−1. As a result of the analysis, the external dose rates of the package were higher in RADTRAN than in MCNP. For the critical dimension of 2, 4, and 8 m, when the distance from package is 1–10 m, the RADTRAN was 1.83, 4.08, and 5.27 times higher on average than MCNP, respectively. And when the distance from the package was 10–100 m and 100–800 m, RADTRAN was 1.10, 2.02, 3.01 times and 1.04, 1.92, 2.43 times higher than MCNP, respectively. It was found that the larger the distance from the package is and the smaller the critical dimension of the package is, the less conservatively RADTRAN assessed. It is because the shape of the package gets closer to the point source as the distance from the package increases, and the shape factor decreases as the critical dimension of the package decreases. The result of this study can be used as the basis for radiation risk assessment when transporting radioactive materials.
직업상 피폭에 대한 현행 방사선 위험성 평가는 종사자의 피폭선량 평가 및 건강진단에 중점을 두고 있 다. 이러한 개인 중심의 위험성 평가는 선량계 미착용 및 개개인의 기호로 인한 건강영향 문제 등 정확한 데이터 확보의 어려움으로 인한 오류의 가능성이 있다. 또한 평가의 기준이 되는 선량한도는 법적 최대 상 한값으로 방사선 방호에 최적화된 값을 의미하지는 않는다. 이에 선원적, 환경적 및 인적 측면을 복합적으 로 고려할 수 있고 방사선방호의 최적화를 이행할 수 있는 국가적 차원의 새로운 위험성 평가 모델이 요구 되고 있다. 본 연구에서는 고용노동부의 위험성 평가에 기반하여 개인이 아닌 작업장 중심의 위험성 평가 모델을 연구하였다. 이를 위해 여러 분야의 위험성 추정 방법을 분석하여 방사선 분야에 적용하기 적합한 모델을 도출하고, 모델에 적용하기 위한 데이터 획득 방법 및 절차에 대해 기술하였다. 본 연구에서 도출한 작업장 중심의 다차원적 위험성 평가 모델은 위험성을 점수화하고 Rader Plot을 이용하여 표현함으로서 보 다 정확한 방사선 위험성 평가를 가능하게 하며, 결론적으로 효율적인 종사자 관리, 선제적 종사자 보호 및 방사선 방호의 최적화 이행에 기여할 것으로 판단된다.