검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        2.
        2023.05 구독 인증기관·개인회원 무료
        The soils contaminated with radionuclides such as Cs-137 and Sr-90 should be solidified using a binder matrix, because radioactively contaminated soils pose environmental concerns and human health problems. Ordinary Portland cement has been widely used to solidify various radioactive wastes due to its low cost and simple process. In this study, simulant soil waste was solidified using cement waste form. The soils were collected around ‘Kori Nuclear Power Plant Unit 1’ and they were contaminated with the prepared simulant liquid waste containing Fe, Cr, Cs, Ni, Co, and Mn. The water-to-dry ingredients (W/D) ratio of cement waste form was 0.40. The cement paste was poured into a cubic mold (5×5×5 cm) and then cured for 28 days at room temperature. The 28-day compressive strength, water immersion, and EPA1311-toxicity characteristic leaching procedure (TCLP) tests were performed to evaluate the structural stability of cement waste form. The compressive strength was not proportional to soil waste loading, and the lowest compressive strength (4±0.1 MPa) was achieved in cement waste form containing 50wt% soil waste. After the water immersion test for 90 days, the compressive strength of cement waste form with 50wt% soil waste increased to 7.5±0.6 MPa, meeting the waste form acceptance criteria in the repository. It is believed that long-term water immersion test contributed to the additional curing and hydration reaction, resulting in the enhanced compressive strength. As a result of the TCLP test, the released amount of As, Ba, Cd, Cr, Pb, Se, Co, Cs, and Sr was less than the domestic and international standards. These results imply that cement waste form can be a promising candidate for the solidification of radioactive soil wastes.