There are generally two kinds of spent filter; one is spent filter media for mainly gaseous purification such as HEPA filter, the other is spent filter cartridge for liquid purification such as CVCS BRS cartridge type filter. The spent filter cartridge from liquid purification system has been storing in special shielding space in auxiliary building in NPPs since the beginning of 2006 according to the long term storage strategy for decaying short lived radionuclide and gaining the time for selecting practical treatment technology before final packaging. The spent filter cartridges generated Kori-1 reactor vary in their sizes as in length from 913 mm to 290 mm and range in radiation level from several hundred mSv per hour to below mSv per hour . It is high time that the spent filter cartridge is treated and packaged because LILW repository in Wolsung area is operating and Kori-1 reactor is scheduled to decommission. The spent filter cartridge is one of the wet solid wastes required of solidification. It is difficult for the spent filter cartridge to solidify because of their shape, structure, physical and chemical characteristics in addition to having high radiation level. NSSC notice defines that solidification of wet solid wastes include that solid material such as spent filter is encapsulated with cement, etc. as a form of macro-encapsulation. The radioactive waste acceptance criteria describes that non-homogeneous waste having above 74,000 Bq/g such as spent filter, dry active waste should be encapsulated with qualified material. Homogeneous waste such as spent resin, sludge, concentrated waste (liquid waste evaporator bottoms), etc. should be solidified complied with requirements except that spent filter which is allowed to encapsulate. It is needed to guide to the practice of these two requirements for spent filter. The sampling and test method is different between homogeneous solidification waste form and spent filter cartridge encapsulation waste form. For example, how core sample can be taken and how void space can be measured among spent filter cartridge in encapsulation waste form. The technical evaluation report for spent filter cartridge polymer encapsulation by US NRC has been reviewed and the technical position of US NRC was identified. As a result of review, improvement fields of waste acceptance criteria for spent filters are pointed out, and the technical position of US NRC for spent filter cartridge solidification is summarized. The recommendation on improvement directions for spent filter cartridge encapsulation is suggested.
파일럿 규모의 유리화플랜트에서 일련의 시험을 통해 고온 세라믹 캔들 필터 시스템의 주요 운전 변수 및 성능을 평가하였다. 실증 시험결과 매 시험초기에는 필터 표면 먼지층(Dust cake)의 생성으로 인해 필터 매질에 걸리는 차압이 급격히 상승하였다. 그런 다음 차압은 곧 일정한 범위에서 안정되었고, 표면유속(Face velocity)에 비례하여 계속적으로 변화하였다. 이와 반대로, 필터 투과율(Permeability)은 매시험 초기에 급격히 감소하였다. 필터표면 먼지의 역세정은 공기압 3~5 bar범위 일때 효율적이었다. 필터 입구 및 출구에서 동시에 등속으로 채취한 먼지농도를 바탕으로 필터의 먼지 포집율(Dust collection efficiency)을 평가한 결과 필터 성능은 설계값인 99.9%과 같은 것으로 나타났다. 100시간의 장기시험을 포함한 일련의 실증시험을 수행하는 동안 고온 필터 시스템의 성능에 영향을 주는 특별한 문제점은 발견되지 않았다.