검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 9

        1.
        2023.11 구독 인증기관·개인회원 무료
        Domestic nuclear power plants conduct radiological environmental impact assessments every year in accordance with the Nuclear Safety and Security Commission (NSSC) notice. Among them, gaseous effluents are evaluated for their effects due to inhalation, external exposure in the air, exposure from ground surface deposits, food intake. In order to evaluate the impact of this exposure pathway, an evaluation point for each pathway must be selected. In the case of evaluation points, each country has different evaluation points. In the case of Korea, the evaluation point is calculated on the assumption that one lives 365 days a year at the EAB and consumes food from the nearest production area. In the case of the United States, external exposure and inhalation are evaluated at the site boundary or the nearest residential area, and food intake is evaluated by assuming that food produced in the nearest residential area or the nearest production area is consumed. Currently, the dose evaluation is optimized and selected so that EAB evaluation point for each site includes 16 direction evaluation points for each unit. In the E-DOSE60 program currently under development, the evaluation point was selected by calculating 16 direction x number of units without optimization. The food intake evaluation point was selected as the point that satisfies the minimum farmland area of the U.S. NRC NUREG-1301 and is the shortest distance from the site. The location of the production point from multiple units in included all 16 directions for each unit and quantity of evaluation points was optimized to satisfy the shortest distance. It can contribute to improving the reliability of the E-DOSE60 program currently under development by selecting new evaluation points for evaluating inhalation and external exposure evaluation and selecting optimized dose evaluation points for each site for evaluation by ingestion.
        2.
        2023.05 구독 인증기관·개인회원 무료
        The US NRC developed a program called NRCDose3 to evaluates the environmental impact of radiation around nuclear facilities. The NRCDose3 code is a software suite that integrates the functionality of three individual LADTAP II, GASPAR II, and XOQDOQ Fortran codes that were developed by the NRC in the 1980’s and have been in use by the nuclear industry and the NRC staff for assessments of liquid effluent and gaseous effluent, and meteorological transport and dispersion, respectively. Through the integrated program, it is possible to conduct safety assessment and environmental impact assessment from liquid and gaseous effluent when operating permits are granted. In addition to a more user-friendly graphic user interface (GUI) for inputting data, significant changes have been made to the data management and operation to support expanded capabilities. The basic calculation methods of the LADTAP II, GASPAR II, and XOQDOQ have not been changed with this update to the NRCDose3 code. Several features have been added. The previous program used only ICRP-2 dose conversion factor, but the new program can additionally use dose conversion factor of ICRP-30 and ICRP-72. In the previous program, 4 age groups (infant, child, teen, and adult) were evaluated during dose evaluation, but when ICRP-72 was selected, 6 age groups (infant, 1-year, 5-year, 10-year, 15-year, and adult) could be evaluated. In addition, when selecting ICRP-72, many user-modifiable parameters such as food intake and exposure time were added. It will be referred to E-DOSE60, a program currently under development.
        3.
        2023.05 구독 인증기관·개인회원 무료
        After the Fukushima nuclear power plant accident in 2011, interest in technology for evaluating residents’ exposure to effluents generated from nuclear power plants at the time of the accident has increased. KHNP has developed the S-REDAP program and is using it to evaluate radiation dose and recommend resident protection measures in the event of a nuclear power plant emergency. Its main functions are source term evaluation, atmospheric diffusion evaluation, radiation dose evaluation, etc. Based on these evaluations, resident protection measures are evaluated. In Japan, evaluation is conducted through a program called SPEEDI-MP (System for Prediction of Environmental Emergency Dose Information Multi-model Package) created by JAEA (Japan Atomic Energy Agency). Similar to S-REDAP, the program also evaluates effluents emitted from nuclear facilities through source term evaluation and atmospheric diffusion factor evaluation. In JAEA, through a program using SPEEDI-MP, the source term evaluation was performed in collaboration with NSC (Nuclear Safety Commission) in the event of the Fukushima nuclear plant accident, and dose evaluation in Japan was performed 2 months as an atmospheric diffusion factor using meteorological data for 2 days. Through comparative analysis of evaluation data from Japan, improvements to the current program be derived.
        4.
        2023.05 구독 인증기관·개인회원 무료
        K-DOSE60, a off-site dose calculation program currently used by khnp, is performing evaluation based on the gaseous effluent evaluation methodology of NRC Reg. Guide 1.109. In particular, H-3 and C-14, which are the major nuclides of gaseous effluent, are evaluated using a ratio activity model. Among them, H-3 is additionally evaluating the dose to OBT (Organically Bound Tritium) and HT as well as HTO (Triated water). However, NRC Reg. Guide 1.109 is a methodology developed in the 1970s, and verification was performed by applying the evaluation methodology of H-3 and C-13 presented by IAEA TRS-472 in 2010 to the current K-DOSE60. The IAEA TRS-472 methodology also includes OBT and HT for H-3. In order to apply the ratio radioactivity model presented in IAEA TRS-472, the absolute and relative humidity were calculated using the weather tower of the nuclear site and used for H-3 evaluation. For the dose evaluation of HT, the previously used Canada Chalk River Lab. (CNL) conversion factor was used. For atmospheric carbon concentration, the carbon concentration presented in IAEA TRS-472 was used, not the carbon concentration in the 1970s of NRC Reg. Guide 1.109. It was confirmed that the K-DOSE60, which applied the changed input data and methodology, was satisfied by performing comparative verification with the numerical calculation value.
        5.
        2023.05 구독 인증기관·개인회원 무료
        In 2022 and 2023, the Korea Institute of Nuclear Safety (KINS), a regulatory body, revised the regulatory guidelines for off-site dose evaluation to residents, marine characteristics surveys around nuclear facilities, and environmental radiation surveys and evaluation around nuclear facilities. In addition, the NRC, a US regulatory body, has revised regulatory guide 1.21 (MEASURING, EVALUATING, AND REPORTING RADIOACTIVE MATERIAL IN LIQUID AND GASEOUS EFFLUENTS AND SOLID WASTE) to change environmental programs for nuclear facilities. The domestic regulatory guidelines were revised and added to reflect the experience of site dose evaluation for multiple units during the operation license review of nuclear facilities, the resident exposure dose age group was modified to conform to ICRP-72, and the environmental monitoring plan was clarified. In the case of the US, the recommended guidelines for updating the long-term average atmospheric diffusion factor and deposition factor, the clarification of the I-131 environmental monitoring guidelines for drinking water, and the clarification of the procedures described in the technical guidelines when changing environmental programs have been revised and added. Through such regulatory trend review, it is necessary to preemptively respond to changes in the regulatory environment in the future.
        6.
        2022.10 구독 인증기관·개인회원 무료
        The U.S. Nuclear Regulatory Commission (NRC) states that every environmental report prepared for the licensing stage of a Pressurized Water Reactor shall contain a statement concerning risk during the transportation of fuel and radioactive wastes to and from the reactor. Thus, the licensee should ensure that the radiological effect in accidents, as well as normal conditions in transport, do not exceed certain criteria or be small if cannot be numerically quantified. These are specified in 10 CFR Part 51 and applied in NUREG-1555 Supplement 1 Revision 1, which deals with Environmental Standard Review Plan. Corresponding regulations in Korea would be the Nuclear Safety and Security Commission Notice No. 2020-7. In Appendix 2 of the Notice, guides on the radiological environmental report for production and utilization facilities, spent nuclear fuel interim storage facilities, and radioactive waste disposal facilities. In this guide, unlike the regulations in the U.S., there are no obligations for radiological dose assessment for workers and public during the transportation. Therefore, overall regulations and their legal basis related to risk assessment during transportation conducted for the environmental report in the U.S. were analyzed in this study. On top of that, through the comparison with regulations in Korea, differences between the two systems were figured out. Finally, this study aims to find the points in terms of assessing transport risk to be revised in the current regulatory system in Korea.
        8.
        2018.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        국내 최초의 상업원전인 고리1호기가 2017년 6월에 영구 정지되었다. 고리1호기 해체를 시작으로 한국은 원전 해체시장에 본격적으로 발을 내딛는다. 원자력발전소 해체를 위해서는 고려해야 할 사항들이 많으며, 방사선환경영향평가 또한 그 중 하나이다. 방사선환경영향평가의 목적은 주변주민의 건강과 안전을 도모하기 위해, 해체 전 및 해체 중에 해당 시설에서 방 출되는 방사성물질로부터 주변주민이 받는 피폭방사선량이 규제 제한치를 초과하지 않음을 확인하는 것이다. 현재 국내에는 해체시 방사선환경영향평가서를 작성하는데 필요한 세부지침이 미비한 상황으로, 다수의 원전 해체 경험을 보유한 미국의 해체시 방사선환경영향평가서를 비교·분석하여 국내 상황에 맞는 해체시 방사선환경영향평가 방안을 개발하였다.
        4,900원