검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2023.11 구독 인증기관·개인회원 무료
        Among the nuclear power plant facility improvement projects, out of a total 10 replacement reactor vessel closure head (RRVCH), five have been replaced, starting with Gori Unit 1, and five, including Hanul Unit 1, Hanbit Units 5 and 6, and Hanul Units 3 and 4 will be replaced in the future. This paper presents the method of treating Latch Housing among radioactive waste generated during the replacement of Hanul Unit 2 (February 2023). Latch Housing controls the control rod by receiving magnetic force from the CRDM’s Coil Stack. Located in the Old Reactor Vessel Head (ORVH) Hot Spot, the range of measured radiation dose rate was 0.3 to 0.8 mSv h-1 (up to 4.5 mSv h-1). The amount of radioactive waste generated was 35.8 Baler-Drum (based on 200L), and the order of treatment was to cut into the Omega Seal of the CRDM, the CRDM and Latch Housing Transfer, the boundary of the CRDM and Latch Housing, the Rod Travel Housing, the Motor Housing and the Latch Assembly, and then transfer and Drumming. In the United States, out of 93 operating reactors, 31 reactor vessel heads have been replaced and 19 reactor vessel heads are scheduled to be replaced. In Korea, 25 reactors are in operation, and two reactors have been permanently shut down. Among them, the nine old reactors for more than 30 years (as of September 2021) are expected to achieve ALARA and reduce radwaste management costs through the management method applied to replace the reactor vessel head.
        2.
        2023.05 구독 인증기관·개인회원 무료
        In the pressurized water nuclear reactors (PWRs), the upper and bottom head penetration nozzles, the geometric asymmetry of the welded part increases from the center to the outer part, increasing the possibility of defects. For this reason, it is important to perform early detection and management through analysis of defects occurring in the welded parts of upper and bottom penetration nozzles of reactor vessel. However, it is very difficult to operate boat sampling of the welding area because the spacing of the penetration nozzle of the bottom head of the reactor is very narrow. In addition, it is more difficult to collect welded specimens of bottom penetration nozzles by electrical discharge machining in a boric acid water environment of nuclear reactor. In this work, to overcoming these technical difficulties, we developed a boat sampling robot system, which is composed of the specimen collection electrode head, borate-mediated discharge electrode and control system. Also, we performed basic performance tests and summarize the results.
        5.
        2014.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 논문에서는 노심용융사고 시 관통노즐이 제거된 원자로용기 하부헤드의 구조 건전성 평가를 수행하였다. 열응력, 노심용융물의 질량 그리고 내압조건의 해석결과를 고려할 때, 하부헤드의 열응력에 의한 영향이 가장 크게 나타났다. 손상 가능성은 파손기준에 따라 평가하였으며, 등가소성변형률이 임계변형률 파손기준보다 낮은 수준으로 평가되었다. 열-구조물 연성해석 결과 하부헤드의 두께 중간층에서 항복강도보다 낮은 응력이 발생한 탄성영역 구간을 확인하였다. 내압이 커지면서 탄성영역 범위가 점차 좁아지면서 탄성영역이 내벽으로 이동하는 결과를 확인하였고, 노심용융사고 시 구조적 건전성을 만족하는 것으로 평가되었다.
        4,000원