인터넷은 전통적인 미디어를 대체하고 주요 뉴스 미디어 플랫폼 중 하나가 되었습니다. 인터넷 소스의 뉴스는 접근성이 좋고 편리하기 때문에 기존 뉴스 소스에 비해 빠르고 간단하게 이동할 수 있습니다. 그러나 가짜 뉴 스가 대량으로 발생하고 정치적, 상업적 이유로 온라인 커뮤니티에 퍼지면서 확인되지 않은 소식통으로부터 입수한 모든 언론 보도가 진짜인 것은 아니다. 가짜 뉴스는 이론적으로나 의도적으로 독자들을 속이거나 잘못 알릴 수 있다. 왜냐하면 사람들은 오프라인 커뮤니티에 영향을 미칠 수 있는 어떤 정보에도 쉽게 얽히게 되기 때문이다. 일부 수동 웹사이트는 정보가 사실인지 확인하도록 설계되어 있지만 온라인, 특히 웹에서 빠르게 확 산되는 정보의 양은 확장되지 않습니다. 이 문제를 해결하기 위해 자동 팩트체크 어플리케이션은 확장성과 자 동화의 요건에 대응하도록 설계되었습니다. 그러나 현재 애플리케이션 방법에는 기계 학습 분류 모델 성능을 개선하기 위해 가짜 뉴스 특징을 식별하는 포괄적인 다차원 데이터 세트가 없다. 이 문제를 해결하기 위해 본 연구논문에서는 사용자가 기사의 제목을 입력하면 데이터를 분류하는 Formb 챗봇을 제안했다. 이 연구 작업 에서 데이터 집합의 분류는 반복 신경망(RNN)과 장기 단기 기억(LSTM) 모델을 사용하여 수행되었다. 가짜 및 실제 뉴스 데이터 세트는 사전 처리되어 모델을 교육하는 데 사용됩니다. 저장된 모델은 지정된 입력 텍스트 의 신뢰성을 확인하기 위해 불일치 서버에 배포됩니다. Disconsid API는 python 파일을 chatbot으로 실행할 수 있는 액세스를 제공합니다. 분석 측면에서, 제안된 모델은 96.77%의 정확도로 CNN와 같은 기존 뉴럴 네트 워크 모델을 능가한다.
In this paper, we propose an Elman recurrent neural network to predict and analyze a time series of gas energy consumption in an air handling unit. To this end, we consider the volatility of the time series and demonstrate that there exists a correlation in the time series of the volatilities, which suggests that the gas consumption time series contain a non-negligible amount of the non-linear correlation. Based on this finding, we adopt the Elman recurrent neural network as the model for the prediction of the gas consumption. As the simplest form of the recurrent network, the Elman network is designed to learn sequential or time-varying pattern and could predict learned series of values. The Elman network has a layer of “context units” in addition to a standard feedforward network. By adjusting two parameters in the model and performing the cross validation, we demonstrated that the proposed model predicts the gas consumption with the relative errors and the average errors in the range of 2%~5% and 3kWh~8kWh, respectively. The results of this study can be used to the energy management system in terms of the effective control of the cross usage of the electric and the gas energies.
In this paper, we propose an Elman recurrent neural network to predict and analyze a time series of power energy consumption. To this end, we consider the volatility of the time series and apply the sample variance and the detrended fluctuation analyses to the volatilities. We demonstrate that there exists a correlation in the time series of the volatilities, which suggests that the power consumption time series contain a non-negligible amount of the non-linear correlation. Based on this finding, we adopt the Elman recurrent neural network as the model for the prediction of the power consumption. As the simplest form of the recurrent network, the Elman network is designed to learn sequential or time-varying pattern and could predict learned series of values. The Elman network has a layer of “context units” in addition to a standard feedforward network. By adjusting two parameters in the model and performing the cross validation, we demonstrated that the proposed model predicts the power consumption with the relative errors and the average errors in the range of 2%~5% and 3kWh~8kWh, respectively. To further confirm the experimental results, we performed two types of the cross validations designed for the time series data. We also support the validity of the model by analyzing the multi-step forecasting. We found that the prediction errors tend to be saturated although they increase as the prediction time step increases. The results of this study can be used to the energy management system in terms of the effective control of the cross usage of the electric and the gas energies.
Ensemble verification and prediction of low-level wind shear (LLWS) are an important matter for airplane landing and management. In this study, we compared the prediction performance of LLWS forecasts of ensemble mean, multiple regression model and long short-term memory (LSTM), which belong to the family of recurrent neural network based on the grid points over the Jeju area. The prediction skills of methods were compared by mean absolute error. We found that the prediction skills of forecasts of LSTM were better than the bias-corrected forecasts in terms of deterministic prediction.
본 연구에서는 순환신경망을 이용한 댐 유입량 예측모형의 적용성 검토를 목적으로 하고 있으며, 이를 위해 소양강댐 유역 및 충주댐 유역을 대상 으로 그간 댐 운영을 통해 축적된 기상 및 수문 빅데이터를 활용하여 인공신경망 모형과 엘만 순환신경망 모형을 구축하였다. 모형의 학습과 예측 을 위하여 유역별 유입량, 강우량, 기온, 일조시간, 풍속자료가 입력자료로 사용되었고 10일간 일별 댐유입량 자료가 모델의 출력자료로 구조화 하여 학습을 진행한 후 검증을 목적으로 2016년 7월 ~ 2018년 6월까지 2개년에 대한 댐 유입량 예측을 수행하였다. 학습된 모형의 유입량 예측 결과를 비교분석한 결과, 소양강댐 유역에서는 인공신경망 모형과 순환신경망 모형 간 예측성능은 큰 차이를 보이지 않았으며, 충주댐 유역에서는 순환신경망 모형의 예측 결과가 인공신경망 모형에 비해 비교적 우수한 성능을 보임에 따라 엘만 순환신경망을 이용하여 댐 유입량 예측모형을 구축 할 경우 예측성능은 기존의 인공신경망 모형과 비슷하거나 다소 우수할 것으로 판단된다. 또한 엘만 순환신경망은 갈수기 댐 유입량 예측에 있어서 인공신경망에 비해 예측결과의 재현성이 우수한 것으로 나타났으며, 엘만 순환신경망 학습에 있어 다중 은닉층 구조가 단일 은닉층 구조보다 예측 성능 향상에 효과적인 것으로 분석되었다.
The talking head (TH) indicates an utterance face animation generated based on text and voice input. In this paper, we propose the generation method of TH with facial expression and intonation by speech input only. The problem of generating TH from speech can be regarded as a regression problem from the acoustic feature sequence to the facial code sequence which is a low dimensional vector representation that can efficiently encode and decode a face image. This regression was modeled by bidirectional RNN and trained by using SAVEE database of the front utterance face animation database as training data. The proposed method is able to generate TH with facial expression and intonation TH by using acoustic features such as MFCC, dynamic elements of MFCC, energy, and F0. According to the experiments, the configuration of the BLSTM layer of the first and second layers of bidirectional RNN was able to predict the face code best. For the evaluation, a questionnaire survey was conducted for 62 persons who watched TH animations, generated by the proposed method and the previous method. As a result, 77% of the respondents answered that the proposed method generated TH, which matches well with the speech.