The primary purpose of this study is to develop system modules of school buildings and the seismic loss function of the system modules for regional loss assessment of school buildings. System modules of school buildings were developed through statistical analysis of school facilities in Korea. The structural system of school buildings with non-seismic details is defined as reinforced concrete with partially masonry walls (RCPM), and 27 system modules of RCPM were developed considering the number of stories, spans, and the age of the building. System modules were designed to assess the structural behavior by applying the shear spring model and the shear failure of the columns of the school building. Probabilistic seismic demand models for each component of system modules were derived through nonlinear dynamic analysis to determine the relationship between seismic intensity, drift ratio, and peak floor acceleration of system modules. The seismic loss function was defined as the total damage ratio, which is the ratio of replacement cost to repair cost to evaluate the seismic loss quantitatively. The system module-based seismic loss well predicted the observed data. It will be possible to help many stakeholders make risk-informed decisions for a region through the regional loss assessment of school buildings in Korea.
This study proposes a methodology for the regional seismic risk assessment of structural damage to buildings in Korea based on evaluating individual buildings, considering inconsistency between the administrative district border and grid lines to define seismic hazard. The accuracy of seismic hazards was enhanced by subdividing the current 2km-sized grids into ones with a smaller size. Considering the enhancement of the Korean seismic design code in 2005, existing seismic fragility functions for seismically designed buildings are revised by modifying the capacity spectrum according to the changes in seismic design load. A seismic risk index in building damage is defined using the total damaged floor area considering building size differences. The proposed seismic risk index was calculated for buildings in 29 administrative districts in 'A' city in Korea to validate the proposed assessment algorithm and risk index. In the validation procedure, sensitivity analysis was performed on the grid size, quantitative building damage measure, and seismic fragility function update.