검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 11

        1.
        2023.11 구독 인증기관·개인회원 무료
        The nuclear facilities at Korea Atomic Energy Research Institute (KAERI) have generated a variety of organic liquid radwaste and radiation levels are also varied. At KAERI, the organic liquid radwaste has been stored at Radioactive Waste Treatment Facility (RWTF) temporarily due to the absence of the recognized treatment technique while inorganic liquid radwaste can be treated by evaporation, bituminization, and solar evaporation process. The organic liquid radioactive waste such as spent oil, cutting oil, acetone, ethanol, etc. was generated from the nuclear facilities at KAERI. Among the organic liquid radioactive wastes, spent oil is particularly significant. According to the nuclear safety act, radioactive waste can be cleared by incineration and landfilling if it meets the criteria of less than 10 μSv/h for individual dose and 1 person – Sv/y for collective dose. Dose assessment was performed on some organic liquid radioactive waste with a very low possibility of radioactive contamination stored in RWTF at KAERI. As a result, it was confirmed that some wastes met the regulatory clearance standards. Based on this, it was approved by the regulatory body, and this became the first case in Korea and KAERI for permission for regulatory clearance of organic liquid radioactive waste by landfill after incineration.
        2.
        2023.11 구독 인증기관·개인회원 무료
        There is a large amount of radioactive waste in waste storage in the Korea Atomic Energy Research Institute. Some of the radioactive waste was generated during the dismantling process due to Korea Research Reactor 1&2 and it accounts for 20% of the total waste. Radioactive waste must be reduced by appropriate disposal methods to secure storage space and to reduce disposal costs. Research Reactor wastes include wastes that are below the acceptable criteria for selfdisposal and non-contaminated wastes, so they can be treated as wastes subject to self-disposal through contamination analysis and reclassification. In order to deregulation radioactive waste, it is necessary to meet the self-disposal standards stipulated in the Domestic Nuclear Act and the treatment standards of the Waste Management Act. The main factors of deregulation are surface contaminant, radionuclide activity and dose assessment. To confirm the contamination of waste, surface contaminant and gamma nuclide analysis were performed. After homogenizing the waste sample, it was placed in 1 L Mariinelli beaker. When collecting waste samples, 1 kg per 200 kg of waste was collected. The concentrations of the major radionuclides Co-60, Cs-134, Cs-137, Eu-152, and Eu-154 were analyzed using HPGe detector. To evaluate radiation dose, various computational programs were used. A dose assessment was performed with the analyzed nuclide concentration. The concentrations of representative nuclides satisfied the deregulation acceptance criteria and the results of the dose assessment corresponding to self-disposal method was also satisfied. Based on this results, KAERI submitted the report on waste self-disposal plan to obtain approval. After final approval, Research Reactor waste is to be incinerated and incineration ash is to be buried in the designated place. Some metallic waste has been recycled. In this study, the suitability of deregulation for self-disposal was confirmed through the evaluation of the surface contaminant analysis, radionuclide concentration analysis and dose assessment.
        3.
        2022.10 구독 인증기관·개인회원 무료
        In KAERI, Waste storage facility in the radiation management area has stored a large amount of wood waste. The amount of waste is approximately 27,000 kg, it accounts for 17% of the total waste in waste storage facility. Proper disposal of wood waste improves the fire resistance performance, secure storage space and reduce disposal costs. In order to self-disposal of wood waste, it is necessary to satisfy the self-disposal standards stipulated by the domestic Atomic Energy Act and the treatment standards of the Waste Management Act. The main factors of standards are surface contaminant, radionuclide activity and radiation dose effects. To confirm the contamination of wood waste, direct indirect measurement methods and gamma nuclide analysis were performed. To evaluate radiation dose, various computational programs were used. The results of the analysis were satisfied with domestic regulations on the classification and self-disposal of radioactive wastes. Based on this results, KAERI submitted the report on wood waste self-disposal plan to obtain approval. After final approval, wood waste is to be incinerated and incineration ash is to be buried in the designated place. The objective of this study is to provide total procedure of wood waste self-disposal and effective representative sampling method.
        4.
        2022.05 구독 인증기관·개인회원 무료
        According to the Atomic Energy Act of Korea, radioactive waste can be cleared when it meets the criteria, less than 10 uSv·y−1 for individual dose and 1 person · Sv·y−1 for collective dose. Consequently, it is necessary to evaluate radiation dose to get permission for regulatory clearance from the regulatory body of Korea. Several computational programs can be used for dose calculation depending on disposal methods such as landfill, incineration, and recycling. As for incineration, the effects of radionuclide emitted during combusting radwaste have to be considered to figure out exposure dose. In this study, GASPAR code is described to assess exposure dose from effluents released to the atmosphere during incinerating combustible radioactive wastes for regulatory clearance. GASPAR is the code programmed by Radiation Safety Information Computational Center at Oak Ridge National Laboratory for computing annual dose due to radioactive effluents released from a nuclear power plant to the atmosphere during routine operation. The calculating methods of the code are based on the mathematical model of U.S. NRC regulatory guide 1.109, about beta and gamma radiation from noble gas in semi-infinite plume, radioiodine, and particulates. GASPAR evaluates both individual dose and population dose. The considering pathways are composed of external exposure by plume and ground deposition of effluents, and internal exposure as a result of inhalation and food ingestion. Since the calculation model of GASPAR requires various variables about the radionuclide and disposal site, the accuracy of the results is decided by inputted values. The program contains the default values to parameters such as the humidity, fraction of deposition, and storage time of foods. However, to get permission, it is important to use the appropriate data representing the condition of the combustion scenario as substitutes for the default since the values are localized to the country where the code was developed. Therefore, dose assessment by GASPAR code can be applied for regulatory clearance by incineration, when reliable values depending on the disposal plan inputted.