The purpose of this study was to optimize dough properties using response surface methodology (RSM) and to demonstrate the performances of dough prepared under optimized conditions. Dough mixed with yeast, margarine, salt, sugar and wheat flour was prepared by fermentation process. Hardness, cohesiveness and springiness of dough were selected as critical quality attributes. The critical formulations (yeast and water) and process (fermentation time) variables were selected as critical input variables based on preliminary experiment. Box-Behnken design (BBD) was used as RSM. As a result, the quardratic, the squared and the linear model respectively provided the most appropriate fit (R2>90) and had no significant lack of fit (p>0.05) on critical quality attributes (hardness, cohesiveness and springiness). The accurate prediction of dough characteristics was possible from the selected models. It was confirmed by validation that a good correlation was obtained between the actual and predicted values. In conclusion, the methodologies using RSM in this study might be applicable to the optimization of fermented foods containing various wheat flour and yeast.
The purpose of this study was to optimize dough properties using response surface methodology (RSM) and to demonstrate the performances of dough prepared under optimized conditions. Dough mixed with yeast, margarine, salt, sugar and wheat flour was prepared by fermentation process. Hardness, cohesiveness and springiness of dough were selected as critical quality attributes. The critical formulations (yeast and water) and process (fermentation time) variables were selected as critical input variables based on preliminary experiment. Box-Behnken design (BBD) was used as RSM. As a result, the quardratic, the squared and the linear model respectively provided the most appropriate fit (R2>90) and had no significant lack of fit (p>0.05) on critical quality attributes (hardness, cohesiveness and springiness). The accurate prediction of dough characteristics was possible from the selected models. It was confirmed by validation that a good correlation was obtained between the actual and predicted values. In conclusion, the methodologies using RSM in this study might be applicable to the optimization of fermented foods containing various wheat flour and yeast.
In order to investigate the adsorption characteristics for Sr ion using the Na-X zeolite synthesized from coal fly ash, batch tests and response surface analyses were carried out. The adsorption kinetic data for Sr ions, using Na-X zeolite, fitted well with the pseudo-second-order model. The uptake of Sr ions followed the Langmuir isotherm model, with a maximum adsorption capacity of 196.46 mg/g. Thermodynamic studies were conducted at different reaction temperatures, with the results indicating that Sr ion adsorption by Na-X zeolite was an endothermic (ΔHo>0) and spontaneous (ΔGo<0) process. Using the response surface methodology of the Box-Behnken method, initial Sr ion concentration (X1), initial temperature (X2), and initial pH (X3) were selected as the independent variables, while the adsorption of Sr ions by Na-X zeolite was selected as the dependent variable. The experimental data fitted well with a second-order polynomial equation by multiple regression analysis. The value of the determination coefficient (R2=0.9937) and the adjusted determination coefficient (adjusted R2=0.9823) was close to 1, indicating high significance of the model. Statistical results showed the order of Sr removal based on experimental factors to be initial pH > initial concentration > temperature.