검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6

        1.
        2023.11 구독 인증기관·개인회원 무료
        Ring Tensile Test (RTT) is mainly performed for comparing tensile strength and total strain between nuclear fuel cladding specimens under various initial conditions. Through RTT, the loaddisplacement (F-D) curve obtained from the uniaxial tensile test can also be obtained. However, the Young’s modulus estimated from the gradient of the straight portion is much lower than general value of materials. The reasons include tensile machine compliance, slack in the fixtures, or elastic deformation of the fixtures and the tooling. Another reason is that the bending of the test part in the ring is stretched with two pieces of tools. Although the absolute value of the Young’s modulus is smaller than the actual value, it is applicable to calculate the ratio of the Young’s moduli of different materials, that is, the relative value. The Young’s modulus, or slope of the linear section, varies slightly depending on which location data is used and how much data is included. In order to obtain a more accurate ratio of Young’s moduli between materials using the RTT results, a post-processing method for the ring tensile test results that can prevent such human errors is proposed as follows. First, the slope of the linear section is obtained using the displacement and load when the load increase is the largest and the displacement and load of the position that is 95% of the maximum load increase. To replace the section where the ring-shaped specimen is stretched at the beginning of the F-D curve, a straight line equal to the slope of the linear section is drawn to the displacement axis from the position of maximum load increase and moved to the origin to obtain the final F-D curve for a RTT. Lastly, the yield stress uses the stress at the point where the 0.2% offset straight line and the F-D curve meet as suggested in the ASTM E8/E8M-11 “Standard test methods for tensile testing of metallic materials”. RTT results post-processing method was coded using FORTRAN language so that it could be performed automatically. In addition, sensitivity analysis of the included data range on the Young’s modulus was performed by using the included data range as 90%, 85%, and 80% of the maximum load increase.
        2.
        2023.11 구독 인증기관·개인회원 무료
        The hydride reorientation (HR) of used nuclear fuel cladding after operation affects the integrity during intermediate and disposal storage, as well as the handling processes associated with transportation and storage. In particular, during dry storage, which is an intermediate storage method, the radial hydrogen redistributes into circumferential hydrogen, increasing the embrittlement of used nuclear fuel cladding. This hydride reorientation is influenced by various key factors such as circumferential stress (hoop stress) due to internal rod pressure, maximum temperature reached, cooling rate during storage, and the concentration of precipitated hydrogen during irradiation. To simulate long-term dry storage of used nuclear fuel, hydrogenated Zircaloy-4 cladding (CWSRA) specimens were used in hydride reorientation tests under various hoop stress conditions (70, 80, 90, and 110 MPa) for extended cooling periods (3 months, 6 months, and 12 months). After the hydride reorientation tests, the cladding’s offset strain (%) was evaluated through a ring compression test, a mechanical property test encompassing both ductility and brittleness. In this study, the offset deformation of the hydride reorientation specimens was compared and evaluated through ring tensile tests. In this study, the offset deformation values were compared and evaluated through ring tensile tests of the hydride reorientation test specimens. Hydrogen in zirconium cladding reduces ductility from a physical perspective and induces rapid plastic deformation. Generally, even in hydrogenated unirradiated cladding, it maintains a tensile strength of around 800 MPa at room temperature. However, high hydrogen content accelerates plastic deformation. In contrast, samples with radial hydrogen distribution exhibit fracture behavior in the elastic region below 500 MPa. This is attributed to the directional of radial hydrogen distribution. Specimens with a hydrogen concentration of 200 ppm fracture faster than those with hydrogen concentrations exceeding 400 ppm. This is believed to be due to the ease of reorientation of radial hydrogen in cladding with relatively low hydrogen content. Although the consistency of the test results is not ideal, ongoing research is needed to identify trends in hydride reorientation from a cladding perspective.
        3.
        2022.10 구독 인증기관·개인회원 무료
        A tensile test is performed to obtain the mechanical property data of the spent fuel cladding. In general, the elastic modulus, elongation, yield stress, tensile stress, etc. are obtained by axial tensile test of cladding attaching an extensometer. However, due to the limitation in the number of specimens for spent nuclear fuel that can be made, the ring tensile test (RTT) whose required length of the specimen is short is mainly performed. In the case of RTT, an extensometer or strain gauge cannot be attached because the gauge part of the specimen is formed around the cladding and is short. In addition, since a load is applied in the radial direction of the cladding, a curved portion of the circular cladding is spread out and becomes straight, and then the cladding is tensioned. For this reason, it is difficult to obtain the stress-strain curve directly from the RTT results. Isight, which is used to identify the optimization design parameters, was used to build an optimization process that minimizes the difference between the RTT and the analysis to estimate the material property. For this, the elastic modulus, plastic strain, and the radius of the RTT jig were taken as fixed variables. As variables, isotropic hardening data and plastic stress were taken. The objective function was taken as the minimization of the area difference of the load-displacement curve obtained from the tests and analysis, of the difference in the magnitude of the maximum reaction force, and of the difference in the location where the maximum reaction force occurred. Optimization workflow was configured in the following order. First, using the calculator component, plastic stress design variables were created. Next, ABAQUS was placed to perform analysis using design variables, and the reaction force or displacement was calculated. After that, the reaction force was calculated considering the 1/4 symmetry condition using the script component. After that, the data matching component performed quantitative comparison of test and analysis data. Finally, by utilizing the exploration component, the plastic stress design variable that minimizes the difference in the objective function was obtained by automatically changing six optimization algorithms. In this paper, the constructed optimization process and the obtained plastic stress by applying it to the SUS316 RTT results are briefly described. The established optimization process can be utilized to obtain mechanical property from the results of the cladding RTT of spent nuclear fuel or new material.
        4.
        2014.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The Notched Ring Test(NRT) has proven to be very useful in determining the slow crack growth behavior of polyethylene pressure pipes. In particular, the test is simple and an order of magnitude shorter in experimental times as compared to the currently used Notched Pipe Test(NPT), which makes this method attractive for use as the accelerated slow crack growth test. In addition, since the NRT specimen is taken directly from the pipe, having maintained the cross-section, processing induced artifacts that would affect the slow crack growth behavior are not altered. This makes the direct comparison to the slow crack growth specimen in pipe from more meaningful. In this study, for comparison with other available slow crack growth methods, including the NPT, the stress intensity factor equation for NRT specimen was developed and demonstrated of its accuracy within 3% of that obtained from the finite element analysis. The equation was derived using a flexure formula of curved beam bending along with numerically determined geometric factors. The accuracy of the equation was successfully tested on 63, 110, 140, 160, 250, and 400 mm nominal pipe diameters, with crack depth ranging from 15 % to 45 % of the pipe wall thickness, and for standard dimensional ratio(SDR) of 9, 11, and 13.6. Using this equation the slow crack results from 110SDR11 NRT specimen were compared to that from the NPT specimen, which demonstrated that the NRT specimen was equivalent to the NPT specimen in creating the slow crack, however in much shorter experimental times.
        4,000원
        6.
        2009.05 KCI 등재 서비스 종료(열람 제한)
        콘크리트는 초기재령에 있어서 수분의 증발 및 이동으로 소성 및 건조수축 등의 수축현상이 발생한다. 국내에서는 아령형 구속건조수축몰드를 활용한 콘크리트의 건조수축 균열 평가방법을 KS에서 규격화하여 활용하고 있으나 이는 균열발생시점 및 구속수축응력을 평가하는 방법으로 균열발생량에 관한 정량적 평가는 어려운 실정이다. 이에 본 연구에서는 콘크리트의 수축변형거동 및 균열발생량에 대한 정량적 데이터를 확보하기 위하여 판상-링형 구속시험방법을 개발하고 시험체 치수가 콘크리트의 수축균열에 미치는 영향을 검토하여 판상-링형 구속시험방법의 최적 시험체 치수 도출 및 수축균열특성에 관한 정량적 평가방법을 제안하고 그 적용성을 검증하고자 한다.