검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1

        1.
        2024.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this study was to identify and evaluate hazardous road sections based on roadside friction. Using GIS mapping and clustering techniques, this study analyzed traffic accidents and roadside friction data based on latitude and longitude coordinates. The density-based spatial clustering of applications with noise (DBSCAN) algorithm was applied, with parameters of MinPts = 5 and eps = 0.0001, determined through a K-nearest neighbor analysis. The data were separated based on traffic flow direction (uphill/ downhill), and clustering was performed separately in each direction to identify specific hazard zones. The DBSCAN clustering results revealed 18 clusters in traffic accident data and 44 clusters in roadside friction data. Traffic accident clusters include various types of accidents (e.g., vehicle-to-vehicle and vehicle-to-pedestrian accidents), identifying locations as high-accident zones. The clustering results from the roadside friction data highlighted areas with crosswalks, absence of curbs, and roadside parking zones as major risk sections. Future research should analyze the operational design domain (ODD) of autonomous vehicles on hazardous road sections and explore the integration of multiple data sources to establish a comprehensive safety management system for accident prevention in autonomous driving environments. Additionally, road hazard sections are categorized into stages (e.g., hazardous, cautious, and safe) to enhance the precision in assessing road conditions. This categorization, combined with a detailed analysis of ODD, serves as a foundation for future research aimed at improving the safety of autonomous driving environments.
        4,000원