검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2022.05 구독 인증기관·개인회원 무료
        Electroanalytical study for the rotating cylinder electrode in molten LiCl-KCl eutectic salt (58– 42mol%) containing MgCl2 (0.1wt%) at 600°C is conducted. The researches of rotating cylinder electrode have been widely conducted for the century. The advantage of the electrode is that it can mitigate the unintended natural convection by providing a controlled diffusion boundary layer thickness. However, the experimental data for the high temperature molten salts is barely existed. The study adopts the electrochemical techniques such as cyclic voltammetry for the static cell and linear sweep voltammetry for the dynamic cell to calculate the diffusion coefficient. The peak current density and limiting current density are measured according to the scan rate. In order to evaluate the mass transfer under hydrodynamic flow condition, the revolution speeds of cylindrical electrode are varied from 10 rpm to 500 rpm which are corresponded to the Reynolds number of 4 and 185 respectively. The flow regime covers from the laminar to semi-turbulent regime (transient) as the critical Reynolds number Recrit is 200. The limiting current density shows a linear trend with the revolution speed and agrees well with the existing mass transfer correlations. For the extended flow regime, a new mass transfer correlation is suggested as the relation of non-dimensional numbers (Sh = aRebScc) based on the dimensionless analysis.