The purpose of the present research is to verify the design characteristics of the SMART facility for the application of the IAEA’s safeguards-by-design (SBD) concept to small modular reactor (SMR) and to establish a foundation for SBD to be faithfully implemented as early as possible from the design stage. International Atomic Energy Agency (IAEA) is planning to facilitate the verification activities of inspectors by developing a safeguards approach to the reactor as early as possible and preparing a safeguards technical report (STR) before commercial operation of SMR begins. To this end, the IAEA is developing various approaches to the application of SBD to SMR with countries such as Republic of Korea, Russian Federation, China, the United States, and Canada through the Member State Support Program (MSSP). In order to review the unique design information of SMART facilities, the only deployable SMR in Korea, and to establish safeguards from the early design stages of SMART, it is necessary to carry out the task through cooperation with the Korea Atomic Energy Research Institute (KAERI) and Korea Institute of Nuclear Nonproliferation and Control (KINAC). IAEA agreed with the KINAC and KAERI to the direction of the project and to prepare both the Design Information Questionnaire (DIQ) and the Safeguards Technical Report (STR) for SMART facilities sequentially. The DIQ is a collection of questions to understand the characteristics of the reactor facilities that must be considered in applying safeguards. The STR is a document referenced by IAEA inspectors when verifying safeguards. Those draft versions were prepared and submitted to the IAEA. After review opinions were received, additional revision was conducted. In 2022, the IAEA holds the consultancy meeting on SBD for SMART. The purpose of the meeting is to review the draft DIQ and STR prepared by designers and discuss the future work plan of the task with designer and the task point of contact in order to safeguards can be considered at the early stage of the design. The results will be beneficial to the efficient safeguards verification activities of IAEA inspectors in the future.
In order to effectively and efficiently apply safeguards to new nuclear facilities, it is recommended to apply safeguards-by-design concept. In evaluating the safeguards in the early stage of the design of a facility, it is essential to analyze the diversion path for nuclear materials. This study suggests a simple method which can generate diversion paths. The essential components constituting the diversion path were reviewed and the logical flow for systematically creating the diversion path was developed. The path generation algorithm is based on this components and logical flow as well as the initial information of the nuclear materials and material flows in a planned facilities. The results will be used to develop a program module which can systematically generate diversion paths using the event tree and fault tree method.