Damping and sound absorption not only reduce environmental pollution caused by vibration and noise, but also improves processing accuracy, resolution of precision measuring instruments and fatigue life of machine parts in various precision machines. The vibration-damping plate is largely divided into a constrained type in which the resin is confined by a plate and a non-constrained type in which a plate is made of a polymer material mainly composed of polymer. The external vibration energy is absorbed by the thermal energy required for friction, stretching and compression of resin, so that the noise and vibration generated by resonance are reduced. The vibration damping ability of the sandwich plate produced in this study was found to be somewhat superior, which may be due to the difference in adhesive force during the manufacture of the sandwich plate. In the experimental results, it was confirmed that the sandwich plate material is superior to the vibration damping ability than the 5182 aluminum single plate material, it can be seen that the sandwich plate is effective for vibration damping of the aluminum alloy plate material.
This study presents a governing equations of bending behavior of anisotropic sandwich plates with multi-layered laminated composite faces. Based on zig-zag models for through thickness deformations, the shear deformation of composite faces is included. All edges of plate are assumed to be simply supported. Results of the bending analysis under lateral loads are presented for the influence of various lay up sequences of antisymmetric angle-ply laminated faces. The accuracy of the approach is ascertained by comparing solutions from the sandwich plates theory with composite faces to the laminated plates theory. Since the present analysis considers the bending stiffness of the core and also the transverse shear deformations of the laminated faces, the proposed method showed higher than that calculated according to the general laminated plates theory. The information presented might be useful to design sandwich plates structure with polymer matrix composite faces.
In this paper, we used various shear deformation functions for modelling isotropic, symmetric composite and sandwich plates discretized by a mixed finite element method based on the Lagrangian/Hermite interpolation functions. These shear deformation theories uses polynomial, trigonometric, hyperbolic and exponential functions through the thickness direction, allowing for zero transverse shear stresses at the top and bottom surfaces of the plate. All shear deformation functions are compared with other available analytical/3D elasticity solutions, are predicted the reasonable accuracy for investigated problems. Particularly, The present results show that the use of exponential shear deformation theory (Karama et al. 2003; Aydogu 2009) provides very good solutions for composite and sandwich plates.