Recently, the interest in the smart buildings is increasing in the architecture field. Among them, a research of facade design using a transformable system that can adjust the effect of the external environment is in progress. One of a typical example of the deployable system is a Scissors system that can change shape by using the geometric conditions of a unit member. Scissors system is a high-tech structural system which can construct the deployable plan and curved space by using the SLE (Scissors-Like Element) consisted of two Bar and Pivot. If the facade is designed by applying Scissors system, it is possible to maximize the performance and aesthetic effect of the structure by using a shape change of the line member. This paper presents a study of deployable facade design applying hybrid-typed Scissors system. A new deployable pattern of facade design is developed by combining Angulated Scissors system and tessellation pattern. Applying the deployable pattern a double skin construction method which is to add an outer wall for design, it raises three dimensional effects and can maximize the artistic essence of the change in shape upon deployment.
P/M enables the economical production of components for many kinds of gears. Functionally, the sub gear requires high tooth accuracy and bending fatigue strength. The whole tooth profile was sized after sintering to satisfy the gear tooth accuracy specification. The part was redesigned to reduce machining requirements. The required bending fatigue strength was achieved through appropriate material choice and induction of compressive residual stress by shotpeening after carburizing. The P/M sub gear replaced a forged steel gear, satisfied performance requirements, expanded the use of P/M applications and provided over 30% cost reduction.