검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2024.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The ocean is linked to long-term climate variability, but there are very few methods to assess the short-term performance of forecast models. This study analyzes the short-term prediction performance regarding ocean temperature and salinity of the Global Seasonal prediction system version 5 (GloSea5). GloSea5 is a historical climate re-creation (2001-2010) performed on the 1st, 9th, 17th, and 25th of each month. It comprises three ensembles. High-resolution hindcasts from the three ensembles were compared with the Array for Real-Time Geostrophic Oceanography (ARGO) float data for the period 2001-2010. The horizontal position was preprocessed to match the ARGO float data and the vertical layer to the GloSea5 data. The root mean square error (RMSE), Brier Score (BS), and Brier Skill Score (BSS) were calculated for short-term forecast periods with a lead-time of 10 days. The results show that sea surface temperature (SST) has a large RMSE in the western boundary current region in Pacific and Atlantic Oceans and Antarctic Circumpolar Current region, and sea surface salinity (SSS) has significant errors in the tropics with high precipitation, with both variables having the largest errors in the Atlantic. SST and SSS had larger errors during the fall for the NINO3.4 region and during the summer for the East Sea. Computing the BS and BSS for ocean temperature and salinity in the NINO3.4 region revealed that forecast skill decreases with increasing lead-time for SST, but not for SSS. The preprocessing of GloSea5 forecasts to match the ARGO float data applied in this study, and the evaluation methods for forecast models using the BS and BSS, could be applied to evaluate other forecast models and/or variables.
        4,200원
        2.
        2002.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        경험적 직교함수(EOF)분석법과 다중회귀법에 기초하여 지연상관된 광역규모 예측인자로부터 3개월 이전에 계절 강수량을 예측할 수 있는 슈퍼앙상블 모델이 개발되었다. 이 모델의 예측성이 교차검증법에 의해 평가되었다. 관측값과 예측값사이의 상관계수는 봄철에 0.73, 여름철에 0.61, 가을철에 0.69, 겨울철에 0.75로 나타났다. 이러한 값은 유의수준 α=0.00에서 유의한 값이다. 수퍼 앙상블 방법의 범주형 예측성이 3개 범주로 나누어진 사례에 대해서 평가되었다. 3개 범주는 계절 누적강수량의 상위 33.3%를 과우해, 하위 33.3%를 소우해, 그 나머지를 평년해로 구분하였다. 범주형 예측의 적중률은 계절에 따라 42%에서 74%로 나타났다.
        4,000원
        3.
        2018.11 KCI 등재 서비스 종료(열람 제한)
        Unit load factor, which is used for the quantification of non-point pollution in watersheds, has the limitation that it does not reflect spatial characteristics of soil, topography and temporal change due to the interannual or seasonal variability of precipitation. Therefore, we developed the method to estimate a watershed-scale non-point pollutant load using seasonal forecast data that forecast changes of precipitation up to 6 months from present time for watershed-scale water quality management. To establish a preemptive countermeasure against non-point pollution sources, it is possible to consider the unstructured management plan which is possible over several months timescale. Notably, it is possible to apply various management methods such as control of sowing and irrigation timing, control of irrigation through water management, and control of fertilizer through fertilization management. In this study, APEX-Paddy model, which can consider the farming method in field scale, was applied to evaluate the applicability of seasonal forecast data. It was confirmed that the rainfall amount during the growing season is an essential factor in the non-point pollution pollutant load. The APEX-Paddy model for quantifying non-point pollution according to various farming methods in paddy fields simulated similarly the annual variation tendency of TN and TP pollutant loads in rice paddies but showed a tendency to underestimate load quantitatively.
        4.
        2017.08 KCI 등재 서비스 종료(열람 제한)
        2014년부터 기상청에서 현업으로 활용하고 있는 전지구 계절예측시스템 GloSea5의 최대 6개월 예측 강수량을 수자원 및 여러 응용분야에 활 용하기 위해서는 예측모델이 가지는 관측자료와의 정량적인 편의를 보정할 필요가 있다. 본 연구에서는 GloSea5의 예측 강수량에서 나타나는 편 의를 보정하기 위해 확률분포형을 활용한 편의보정기법, 매개변수 및 비매개변수적 편의보정기법 등 총 11개의 기법을 활용하여 계절예측모델의 적용성을 평가하고 최적의 편의보정기법을 선정하고자 하였다. 과거재현기간에 대한 편의보정 결과, 비매개변수적 편의보정기법이 다른 기법에 비해 가장 관측자료와 유사하게 보정하는 것으로 분석되었으나 예측기간에 대해서는 상대적으로 많은 이상치를 발생시켰다. 이와는 대조적으로 매개변수적 편의보정기법은 과거재현기간 및 예측기간 모두 안정된 결과를 보여주고 있음을 확인할 수 있었다. 본 연구의 결과는 수자원운영 및 관 리, 수력, 농업 등 계절예측모델을 활용한 여러 응용분야에 적용이 가능할 것으로 기대된다.