본 연구는 레몬과즙의 헤스페리딘 함량이 가장 많은 수확시기 지표를 결정하기 위해 수관내부 및 외부에 착과된 과실에 대해 시기별 헤스페리딘 함량을 착색시기 및 과중과 연관시켜 평가했다. 그 함량은 과실생장에 따라 달랐으며 수관내부 및 외부에 있어 착색이 막 시작되는 개화 후 162일과 176일째에 가장 많았다. 그리고 수관외부가 내부보다 많았다. 이상의 결과는 레몬과실의 헤스페리딘 함량이 가장 많은 적정 수확 시기는 착색이 막 시작이 되고 과실의 생장이 멈추기 직전이라는 것을 나타냈다.
The key objective of this study was to evaluate trophic state and empirical water quality models along with analysis of fish trophic guilds in relation to water chemistry (N, P). Trophic state index (TSI), based on total phosphorus (TP) and chlorophyll-a (CHL), ranged between oligotrophic and hypereutrophic state, by the criteria of Nürnberg(1996), and was lower than the trophic state of total nitrogen (TN). Trophic relations of Secchi depth (SD), TN, TP, and CHL were compared using an empirical models of premonsoon (Pr), monsoon (Mo), and postmonsoon (Po). The model analysis indicated that the variation in water transparency of Secchi depth (SD) was largely accounted (p < 0.001, range of R2 : 0.76–0.80) by TP during the seasons of Mo and Po and that the variation of CHL was accounted (p < 0.001, R2 = 0.70) up to 70% by TP during the Po season. The eutrophication tendency, based on the TSITP vs. TSIN:P were predictable (R2 ranged 0.85–0.90, p < 0.001), slope and y intercept indicated low seasonal variability. In the mean time, TSIN:P vs. TSICHL had a monsoon seasonality in relation to values of TSIN:P during the monsoon season due to a dilution of reservoir waters by strong monsoon rainfall. Trophic compositions of reservoir fish reflected ambient contents of TN, TP, and CHL in the reservoir waters. Thus, the proportions of omnivore fish increased with greater trophic conditions of TP, TN and CHL and the proportions of insectivore fish decreased with greater trophic conditions.