강진 시 원자력발전시설의 비선형 응답이 중요하기 때문에 이 시설의 내진성능에 대한 관심이 증가하였다. 이 연구에서는 원자력 발전소 철근콘크리트 전단벽의 유한요소해석을 위한 재료모델의 적절한 변수를 제시하였다: 최대인장강도, 팽창각, 손상계수. 이를 위해 상용 유한요소 해석프로그램인 ABAQUS를 사용하여 낮은 형상비를 가진 철근콘크리트 전단벽의 비선형 거동과 전단 파괴모드 에 대한 이 주요 변수의 효과에 대한 연구를 수행하였다. 연구결과에 기반하여 비선형 시간이력해석을 통해 강진 하의 원자로건물의 비선형 응답을 평가하였다.
A shake table test is conducted for the three-story reinforced concrete building structure using 0.28 g, 0.5 g, 0.75 g, and 1.0 g of seismic input motions based on the Gyeongju earthquake. Computational efforts are made in parallel to explore the mechanical details in the structure. For engineering practice, the elastic modulus of concrete and rebar in the dynamic analysis is reduced to 38% and 50%, respectively, to calibrate the structure's natural frequencies. The engineering approach to the reduced modulus of elasticity is believed to be due to the inability to specify the flexibility of the actual boundary conditions. This aspect may lead to disadvantages of nonlinear dynamic analysis that can distort local stress and strain relationships. The initial elastic modulus can be applied directly without the so-called engineering adjustment with infinite element models with spring and spring-dashpot boundary conditions. This has the advantage of imposing the system flexibility of the structure on the sub-boundary conditions of springs and damping devices to control its sensitivity in a serial arrangement. This can reflect the flexibility of realistic boundary conditions and the effects of system damping (such as the gap between a concrete footing and shake table, loosening of steel anchors, etc.) in scalar quantities. However, these spring and dashpot coefficients can only be coordinated based on experimental results, making it challenging to select the coefficients in-prior to perform an experimental test.
The dynamic characterization of a three-story auxiliary building in a nuclear power plant (NPP) constructed with a monolithic reinforced concrete shear wall is investigated in this study. The shear wall is subjected to a joint-research, round-robin analysis organized by the Korea Atomic Energy Research Institute, South Korea, to predict seismic responses of that auxiliary building in NPP through a shake table test. Five different intensity measures of the base excitation are applied to the shaking table test to get the acceleration responses from the different building locations for one horizontal direction (front-back). Simultaneously to understand the global damage scenario of the structure, a frequency search test is conducted after each excitation. The primary motivation of this study is to develop a nonlinear numerical model considering the multi-layered shell element and compare it with the test result to validate through the modal parameter identification and floor responses. In addition, the acceleration amplification factor is evaluated to judge the dynamic behavior of the shear wall with the existing standard, thus providing theoretical support for engineering practice.
초고층 건물의 횡변위 제어를 위하여 사용되는 아웃리거를 기존의 철골 트러스 대신에 철근콘크리트 벽체로 대체할 수 있다. 철근콘크리트 아웃리거 벽체를 외부 기둥에 연결할 경우에는 축력뿐만 아니라 전단력과 모멘트가 외부 기둥에 유발될 수 있다. 본 연구에서는 아웃리거 벽체 외단부의 회전으로 인한 외부 기둥의 전단력을 수식으로 유도하고 그 값을 유한요소해석 결과와 비교하였다. 유한요소해석에서는 층별 연결보의 효과와 전단벽과 아웃리거를 보와 평면응력요소로 모델링한 효과를 분석하였다. 층별 연결보의 효과는 거의 없었으며 평면응력요소는 보요소보다 더 큰 강성을 가진 것으로 해석되었다. 아웃리거 벽체의 외단부 회전으로 인한 외부기둥의 층간 회전각과 전단력은 허용값에 비하여 상당히 작은 값이 발생하였다. 따라서 초고층 건물에 철근콘크리트로 된 아웃리거 벽체를 적용할 경우에도 외부 기둥에 유발되는 전단력과 모멘트에 대하여 별도의 검토를 할 필요는 없을 것으로 판단된다.
Spatial variations of a seismic wave are mainly wave passage and wave scattering. Wave passage effect is produced by changed characteristics of exciting seismic input motions applied to the bedrock. Modified input motions travel horizontally with time differences determined by apparent shear wave velocity of the bedrock. In this study, wave passage effect on the seismic response of a structure-soil system is investigated by modifying the finite element software of P3DASS (Pseudo 3-Dimensional Dynamic Analysis of a Structure-soil System) to apply inconsistent (time-delayed) seismic input motions along the soft soil–bedrock interface. Study results show that foundation size affected on the seismic response of a structure excited with inconsistent input motions in the lower period range below 0.5 seconds, and seismic responses of a structure were decreased considerably in the lower period range around 0.05 seconds due to the wave passage. Also, shear wave velocity of the bedrock affected on the seismic response of a structure in the lower period range below 0.3 seconds, with significant reduction of the seismic response for smaller shear wave velocity of the bedrock reaching approximately 20% for an apparent shear wave velocity of 1000m/s at a period of 0.05 seconds. Finally, it is concluded that wave passage effect reduces the seismic response of a structure in the lower period range when the bedrock under a soft soil is soft or the bedrock is located very deeply, and wave passage is beneficial for the seismic design of a short period structure like a nuclear container building or a stiff low-rise building.
이 논문은 부분공간 시스템 확인기법을 이용하여 전단빌딩의 강성행렬과 부재의 강성을 추정하는 기법을 소개한다. 시스템 행렬은 입력-출력 데이터로 구성된 행켈행렬을 LQ 분해와 특이치 분해를 통해 추정한다. 추정된 시스템 행렬은 닮음 변환을 통해 실제 좌표축으로 변환하고, 변환된 시스템 행렬로부터 강성행렬을 계산한다. 추정된 강성행렬의 정확성과 안정성은 행켈행렬의 크기에 따라 변한다. 전단빌딩의 기저 유한요소 모델을 이용하여 행켈행렬의 크기에 따른 강성행렬의 추정오차 곡선을 구한다. 오차 곡선을 이용하여 목표 정확도 수준에 부합하는 행켈행렬의 크기들을 결정한다. 이렇게 선택된 행렬의 크기들 중에서 부분공간 시스템 확인의 계산비용을 고려하여 보다 적절한 행렬의 크기를 결정할 수 있다. 결정된 크기의 행켈행렬을 이용하여 강성행렬을 추정하고 추정된 강성행렬로부터 부재의 강성을 추정한다. 제안된 방법을 손상 전후의 5층 전단빌딩 수치 예제에 적용하여 타당성을 검증한다.
In this study, a shear wall-slab damper system for seismic retrofitting of existing low-rise school buildings was proposed. The proposed system is to control the earthquake-induced vibration of the existing building structures using the energy dissipation effect of hysteretic damper inserted between the extended shear wall and existing moment frame. The numerical analyses were performed to investigate the vibration control efficiency of the shear wall-slab damper system and to identify the range of optimal yielding strength of the slab damper. In addition, variation of shear force of the extended shear wall with regard to the yield strength of the dampers in a range from 10 to 100 percent of the maximum base shear force of the retrofitted structure was investigated. The numerical analyses results showed that the maximum displacement of the structures with the slab damper whose yield strength is equal to 20 percent of the maximum base shear. On top of that, the slab damper system reduced the shear force of the shear wall by about 50 percent in comparison with the existing frame-shear wall system with rigid diaphragm slabs.
전단빌딩에 발생한 손상 추정에 있어서 대상 구조물의 물성치를 가정하고 이상화한 모델을 이용한 역해석이 필요하다. 강성행렬을 이용하는 고전적인 손상추정 방법에 비해 유연도 행렬을 이용한 손상추정은 구조물의 저차모드를 이용하기 때문에 비교적 정확한 값을 계산할 수 있기 때문에 더 효과적으로 알려져 있다. 이 논문에서는 손상추정을 위한 알고리즘으로 유전자 알고리즘(Genetic Algorithm, GA)을 도입하였고, 구조 응답에서 취득할 수 있는 유연도 행렬을 이용하여 역해석을 통한 손상추정 기법을 소개하고 있다. 제안된 손상추정 기법은 전단빌딩의 강성에 대한 정확한 정보가 없는 상황에서 전단빌딩의 손상으로 인한 실제 강성변화량을 추정하도록 하였다. 더불어 open source code인 OPENSEES를 이용하여 전단빌딩 수치해석을 통해 제안된 손상추정 기법의 효율성을 검증하였다.
다층구조물의 경우 변위보다 층간변위에 의해 구조물의 파괴가 발생되나 현행 국 내외 내진설계 규준에 제시된 역량스펙트럼 법에서는 변위에 의한 응답산정으로 층간변위를 정확히 예측할 수가 없었다. 따라서 본 논문에서는 다층구조물의 가장 기본적인 모델인 전단빌딩(Shear Building)에 대하여 기존의 역량해석법의 간편성과 장점을 변함없이 유지하면서, 구조물의 파괴에 직접적인 영향을 미치는 층간변위를 실제에 가깝게 예측하고 구조물의 내진성능을 평가할 수 있는 개선된 역량스펙트럼 법을 제안하고자 한다. 나아가 제안된 방법을 예제구조물에 적용하고 시간이력 해석결과와 비교함으로서 제안된 방법의 신뢰성에 대한 검증을 수행하였다.
본 연구는 경주부근에서 일어난 3개의 지진 (1999년 4월 24일, 규모 3.3, 6개 관측소; 1999년 6월 2일, 규모 4.0, 14개 관측소; 1999년 9월 12일, 규모 3.2, 7개 관측소)으로부터 27개의 관측된 지반진동 자료를 이용하여 지진원 및 지진파감쇄특성 변수값을 분석하였다. 본 연구에서는 구하고자 하는 모든 값을 동시에 비선형적으로 분석하기 위해 LM (Levenberg -Marquardt) 역산방법을 적용하였고 전단파 에너지를 이용하였다. 3개지진의 평균 응력강하값은 약48-bar이고 본 연구에 이용된 모든 관측소 부지부근 지진파감쇄 {\kappa}값의 평균은 0.0312-sec로 분석되었다. 또한 광역 지진파감쇄값인 Qo 과 {\eta}값은 각각 417 및 0.83으로 분석되었다. 특히 지진파감쇄 {\kappa}값은 미국 동부지역 대푯값 보다 훨씬 크고 미국 서부지역 대푯값 보다 약간 작은 값을 보여주고 있어 관측소 부지증폭 특성에 대한 분석자료가 있으면 보다 의미있는 결과를 얻을 수 있다고 판단된다. 본 연구에서 분석된 지진원 및 지진파감쇄 특성 변수값들은 지배방정식의 차이 등으로 인해 기존의 연구결과와 일부 파라메타값에 있어서 다소 커다란 차이를 보여주고 있다.
본 연구에서는 지진하중을 받는 탄성구조물을 대상으로 층전단력 분포에 기초한 마찰감쇠기의 설계방법을 제시하였다. 먼저 마찰감쇠기의 슬립하중(slip-load)을 정규화하는 방법 별로 단자유도 시스템의 수치해석을 수행하고 비교하였다. 이를 통해 슬립하중과 가새 강성의 영향을 파악하였으며, 설치용 가새와 원구조물의 최적강성비를 찾았다. 다음으로는 다양한 고유주기와 층수를 갖는 구조물을 대상으로 수치해석을 통해 마찰감쇠기의 설치 층수와 위치의 결정방법 및 슬립하중의 분배 방법을 도출하였다. 이 과정에서 설치 층수가 포함된 성능지수를 사용하여 슬립하중의 총합으로부터 최적의 설치 층수를 도출하는 경험식을 제시하였다. 마지막으로 실제 지진하중을 사용한 수치해석을 통해 기존의 최적설계 방법과 비교하여 제안된 방법의 우수성을 입증하였다.
In this study, a seismic design methodology for a friction damper based on the story shear force of an elastic building structure is proposed. First, using two normalization methods for the slip-load of a friction damper, numerical analyses of various single-degree-of-freedom systems are performed. From those analyses, the effect of the slip-load and brace stiffness was investigated and the optimal stiffness ratio of the brace versus original structure was found. Second, from the numerical analysis for five multi-story building structures with different natural frequency and the number of story, reasonable decision method for the total number of installation floor, location of installation and distribution of slip-loads are drawn. In addition, an empirical equation on the optimal number of installation floor is proposed. Finally, the superiority of the proposed method compared to the existing design method is verified from the numerical analysis.
지진하중을 받는 구조물은 모드참여계수에 의하여 각각의 모드에 지진하중이 분배, 전달된다. 이러한 특성 때문에 모드참여계수는 지진하중을 받는 구조물의 해석에서 매우 중요한 요소이다. 그러나 이상화된 해석 구조물의 모드참여계수는 해석적 모델링이나 시공오차 등에 의하여 실 구조물의 참여계수와 다르기 때문에 실제 거동을 예측, 반영하기에 한계가 있다. 본 연구에서는 시스템 식별기술과 H^{\infty} 최적 모델 응축법을 활용하여, 구조물의 1차 모드참여계수를 산정하는 기법을 제안한다. 이 기법은 시스템 식별로부터 구현된 상태방정식을 전형의 상태방정식과 비교하는 과정에서 시스템의 가제어, 가관측 행렬의 비에 의하여 결정된다. 본 연구에서 제안한 모드참여계수산정기법은 단자유도, 다자유도 전단구조물에 대한 수치해석을 통하여 검증하였다.
현재 국내에서는 벽과 바닥판만으로 이루어진 벽식 구조형식의 아파트 건물이 많이 건설되고 있다. 아파트와 같은 주거구조물에서는 다양한 진동원에 의하여 진동이 발생하고 이러한 진동은 벽과 바닥판을 통하여 이웃한 세대 및 위, 아래층 세대로 전달되게 된다. 벽식구조물의 진동해석을 정확하게 수행하기 위해서는 벽과 바닥판을 많은 수의 유한요소로 세분한 모델을 사용하는 것이 필요하다. 그러나 아파트와 같은 벽식구조물 전체를 수많은 유한요소로 세분하여 모형화하면 막대한 해석시간과 컴퓨터 메모리가 필요하게 된다. 따라서 본 연구에서는 상당히 줄어든 해석시간과 컴퓨터 메모리를 사용하여 정확한 해석결과를 얻기 위하여 행렬응축기법으로 벽과 바닥판에 수직인 자유도만 가지는 효율적인 진동해석 모델을 제안한다. 벽식구조물에서 벽과 바닥에 수직인 자유도만을 남기고 나머지 자유도를 행렬응축기법을 통하여 한꺼번에 소거를 한다면 행렬응축과정에서 상당히 많은 양의 시간이 소요된다. 따라서 본 연구에서는 벽이나 바닥판에 수직인 자유도만을 가진 수퍼요소를 생성한 후 이를 조합하여 한 층을 나타내는 부분구조를 만들고 최종적으로 부분구조를 조합하여 전체 구조물을 구성하는 모형화 기법을 제안하였다. 제안된 해석기법의 정확성과 효율성을 검증하기 위하여 3층 및 5층의 벽식구조물을 예제구조물로 사용하여 동적해석을 수행하였다. 예제해석 결과 제안된 해석방법의 결과는 절점당 6개의 자유도를 모두 사용한 해석모델의 결과와 비슷한 정확성을 보이면서도 소요되는 해석시간과 컴퓨터 메모리를 대폭 줄일 수 있었다
현재 국내에서는 벽체와 바닥판으로만 구성된 벽식 구조형식의 아파트 건물이 많이 사용되고 있다. 또한 청력에 대한 저항이 뛰어나기 때문에 전단벽 코어를 갖는 입체골조구조물이 고층 빌딩의 구조시스템으로 자주 이용된다. 기능적인 이유로 인해 이러한 구조물들의 전단벽에는 하나 또는 여러 개의 개구부가 발생하게 된다. 개구부가 있는 전단벽을 정확하게 해석하기 위해서는 여러 개의 유한요소를 사용하여 구조물을 세분모형화하는 것이 필요하다. 그러나, 전체 구조물을 유한요소로 세분하여 모형화하는 것은 막대한 해석시간과 컴퓨터 메모리를 소요하게 된다. 개구부의 수, 크기, 위치에 상관없이 적용할 수 있는 효율적인 해석기법이 본 논문에서 제안되었다. 제안된 해석기법에서는 슈퍼요소와 부분구조, 행렬응축, 가상보 등을 이용하였고 제안된 해석기법의 효율성을 검증하기 위해 벽식구조물과 전단벽 코어를 갖는 입체골조구조물의 3차원 해석이 수행되었다. 예제구조물의 해석을 통해 제안된 해석기법이 해석시간과 컴퓨터메모리를 크게 감소시키고, 정확한 해석결과를 얻을 수 있음이 확인되었다.
현재 국내에서는 아파트 건물을 짓는데 벽과 바닥판으로만 이루어진 벽식 구조형식을 많이 사용하고 있다. 이러한 고층 아파트건물을 해석하기 위해서 ETABS나 MIDAS/BDS 같은 상용프로그램이 주로 사용되고 있다. ETABS는 해석상의 편의를 위하여 바다판을 강막으로 가정하여 모형화 하고 바닥판의 휨강성은 고려하지 않고 있다. 이러한 가정은 프레임 구조물을 해석할 때에는 합리적이라고 할 수 있다. 그러나 벽식 구조물은 바닥판의 휨강성이 전체 구조물의 횡방향 강성에 큰 영향을 미치므로 바닥판의 휨강성을 고려하지 않으면 전체 구조물의 강성을 과소평가하게 된다. 따라서 바닥판을 판요소로 세분하여 모형화 하는 것이 필요하다. 그러나 이때 많은 양의 해석 시간과 컴퓨터 메모리가 필요하게 된다. 따라서 본 연구에서는 부분구조법과 행렬응축기법을 사용하여 해석 시간과 컴퓨터 메모리의 사용을 줄이면서도 바닥판의 휨강성을 효율적으로 해석할 수 있는 해석 기법을 제안하였고 예제를 통하여 검증하였다.
구조물의 손상 추정은 동적응답신호로부터 고유주기와 모드형상을 구한 후 이를 역해석하여 손상위치와 손상정도를 파악함으로써 이루어 진다. 건축구조물의 경우 토목구조물에 비하여 구조형식이 복잡하고 비구조요소 및 노이즈 등의 영향으로 인하여 구조물 판별에 어려움이 있다. 동적응답신호를 이용한 건물의 손상추정에 관한 최근의 연구들은 손상추정을 위하여 민감도 또는 추정치 등 간접적 지표를 사용하고 있으나, 좀 더 합리적이고 명확한 손상추정을 위하여 운동방정식으로부터 직접 유도된 변수를 손상지수로 활용할 필요가 있을 것으로 판단된다. 따라서 본 연구에서는 전단형 건물의 운동방정식으로부터 직접 유도된 층강성 감소비를 손상지수로 하는 손상추정 방법을 제안하였다. 제안된 손상지수는 손상 전 모드형상과 손상 전 후 고유진동수 차이를 알면 구할 수 있다. 제안된 손상 추정방법을 수치해석예제에 적용한 결과 손상이 발생한 층에서 층강성 변화율이 (-)부호를 나타내었으며, 크기가 다른 층에 비하여 15배 정도 크게 나타나 전단형 건물의 손상 추정지수로서 활용될 수 있을 것으로 판단된다.
The purpose of this study is to provide the damage detection method using wavelet transformation. The damage location index through the mode shape of damaged structure is formulated theoretically and applied to numerical analysis model of MATLAB. The shacking table test on reduced 3 story shear building is performed and the dynamic response signal is wavelet transformed. The result of damage detection using wavelet transformed signal is compared to that of non wavelet transformed signal to verify the applicability of the wavelet transformation in damage detection.
The purpose of this study is to establish the damage assessment system on shear building structures by mode shape. The damage location index using 1st mode shape is observed theoretically to find out damage location. The shacking table test on 3 story shear building is performed for the examination of the damage assessment method. In this study, the data obtained in experiments using the damage index was established and programmed.
The purpose of this study is to present the damage detection method on shear building structures by mode shape. The damage location index using 1st mode shape is observed theoretically to find out damage location. The damage detection method is applied to numerical analysis model such as MATLAB and MIDAS GENw for the verification. Finally the shacking table test on 3 story shear building is performed for the examination of the damage detection method.