검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2018.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In a sheet metal forming process, fracture and wrinkle are the most difficult task in new parts launching. The variation in process condition generates the fracture and wrinkle fluctuation. The fracture and wrinkle are very sensitive to the process conditions, then the main effects of the design variables cannot be obtained from the standard mean analysis. Therefore, in order to minimize the fracture and wrinkle in parts of automobile, a special method to counterpart is required. In this study, a new design method to achieve the optimal in the sheet metal forming process is proposed. The effectiveness of the proposed methods is shown with an example of the parts of fracture and wrinkle.
        4,000원
        2.
        2015.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Incremental sheet metal forming is a manufacturing process to produce thin parts using sheet metals by a series of small incremental deformation. The process rarely needs dedicated dies and molds, thus, preparation time for the process is relatively short as to be compared to conventional metal forming. Spring back in sheet metal working is very common, which causes critical errors in dimensions. Incremental sheet metal forming is not fully investigated yet. Hence, incremental sheet metal forming frequently produces inaccurate parts. This paper proposes a method to minimize dimensional errors to improve shape accuracy of products manufactured by incremental forming. This study conducts experiments using an exclusive incremental forming machine and the material for these experiments are sheets of aluminum AL1015. This research defines a process parameter and selects a few factors for the experiments. The parameters employed in this paper are tool feed rate, tool diameter, step depth, material thickness, forming method, dies applied, and tool path method. In addition, their levels for each factor are determined. The plan of the experiments is designed using orthogonal array L8 (27) which requires minimum number of experiments. Based on the measurements, dimensional errors are collected both on the tool contacted surfaces and on the non-contacted surfaces. The distances between the formed surfaces and the CAD models are scanned and recorded using a commercial software product. These collected data are statistically analyzed and ANOVAs (analysis of variances) are drawn up. From the ANOVAs, this paper concludes that the process parameters of tool diameter, forming depth, and forming method are the significant factors to reduce the errors on the tool contacted surface. On the other hand, the experimental factors of forming method and dies applied are the significant factors on the non-contacted surface. However, the negative forming method always produces better accuracy than the positive forming method.
        4,000원