검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 56

        2.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The function of coolant in machining is to reduce the frictional force in the contact area in between the tool and the material, and to increase the precision by cooling the work-piece and the tool, to make the machining surface uniform, and to extend the tool life. However, cutting oil is harmful to the human body because it uses chlorine-based extreme pressure additives to cause environmental pollutants. In this study, the effect of cutting temperature and surface roughness of titanium alloy for medical purpose (Ti-6Al-7Nb) in eco-friendly ADL slot shape machining was investigated using the response surface analysis method. As the design of the experiment, three levels of cutting speed, feed rate, and depth of cut were designed and the experiment was conducted using the central composite planning method. The regression expressions of cutting temperature and surface roughness were respectively obtained as quadratic functions to obtain the minimum value and optimal cutting conditions. The values from this formula and the experimental values were compared. As a result, this study makes and establishes the basis to prevent environmental pollution caused by the use of coolant and to replace it with ADL (Aerosol Dry Lubricant) machining that uses a very small amount of vegetable oil with high pressure.
        4,000원
        4.
        2022.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of using coolant in machining is both to increase a tool life and also to prevent product deformation and thus, stabilize the surface quality by lubricating and cooling the tool and the machining surface. However, a very small amount of cutting mist should be used because chlorine-based extreme pressure additives are used to generate environmental pollutants in the production process and cause occupational diseases of workers. In this study, medical titanium alloy (Ti-6Al-7Nb) was subjected to a processing experiment by selecting factors and levels affecting cutting power in the processing of the Aerosol Dry Lubrication (ADL) method using vegetable oil. The machining shape was a slot to sufficiently reflect the effect of the cutting depth. As for the measurement of cutting force, the trend of cutting characteristics was identified through complete factor analysis. The factors affecting the cutting force of ADL slot processing were identified using the reaction surface analysis method, and the characteristics of the cutting force according to the change in factor level were analyzed. As the cutting speed increased, the cutting force decreased and then increased again. The cutting force continued to increase as the feed speed increased. The increase in the cutting depth increased the cutting force more significantly than the increase in the cutting speed and the feed speed. Through the reaction surface analysis method, the regression equation for predicting cutting force was identified, and the optimal processing conditions were proposed. The cutting force was predicted from the secondary regression equation and compared with the experimental value.
        4,200원
        7.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        여수 사도 공룡발자국 화석지는 많은 수의 공룡발자국 화석과 함께 공룡의 집단행동에 대한 연구로 잘 알려진 지역이다. 또한 다양한 종류의 지질유산 및 지형유산이 분포하고 있어 지질관광과 지질교육의 장으로 주목받고 있다. 그러나 지리적 위치에 따른 접근성, 조차에 의한 시간적 제약, 지속적인 풍화 및 훼손에 의해 학생들의 교육을 위한 야외조사는 매우 제한적으로만 이루어지고 있다. 따라서 이번 연구는 최근 다양한 분야에서 이용되고 있는 사진측량법을 이용하여 사도의 공룡발자국 화석들의 3D 모델과 이미지를 생성한 후 이를 통해 과거에 확인하지 못한 화석에 대한 세부적인 정보를 확인함과 동시에 이를 교육자료로 활용 할 수 있는 방안에 대하여 제안하고자 한다. 획득한 3D 이미 지를 통해 확인한 결과 기존에 육안이나 사진으로 확인하지 못하였던 일부 발자국 화석들의 존재를 확인할 수 있었고 기존에 발견된 화석이라도 사진이나 해석 드로잉으로 표현하지 못하였던 세부를 이미지로 나타낼 수 있었다. 또한 발자국 화석의 3D 모델은 향후 반영구적인 데이터로 보존할 수 있어 여러 형태로의 활용과 보존이 가능하다. 이번 연구에서는 사진측량법으로 얻어진 3D 모델을 활용하여 3D 프린팅 및 가상야외조사에 활용할 모바일 증강현실 콘텐츠를 구현하였으며 향후 3D 모델이 필요한 다양한 교육 콘텐츠 분야에서 사진측량법을 활용할 수 있을 것으로 보인다.
        4,800원
        9.
        2021.05 구독 인증기관 무료, 개인회원 유료
        The diaphragm is an important part because it plays an important role in changing the flow direction of hightemperature and high-pressure steam in the steam turbine. Because it is subjected to high pressure by high temperature steam, there should be great concerns about breakage of parts, runouts due to vibration by rotating parts, and deformation due to creep effect and fatigue breakage due to long-term use in high temperature environments. In order to ensure the safety of turbine components in such a harsh environment, structural analysis should be prioritized prior to manufacturing prototypes. In this study, in order to verify the design stability of the diaphragm, physical safety is checked through static analysis, vibration analysis, and fatigue analysis, and the fatigue life is predicted. The total deformation, equivalent stress, and strain are determined by static analysis, and the stress and total deformation by the harmonic response are obtained through vibration analysis, and the stability is judged by comparing it with the characteristic value. We intend to verify the safety of the design and propose a complementary diaphragm design.
        4,000원
        10.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        As modern industries are highly being developed, it is required that mechanical parts have to be manufactured with a high precision. In order to have precise parts, error-free designs have to be done before manufacturing with accuracy. For this intention being fulfilled, a mechanical analysis is essential for design proof. Nowadays, FEM simulation is a popular tool for verifying a machine design. In this paper, an impeller, being utilized in a compressor or an oil mixer as an actuator, is studied for an evaluation. The purpose of this study is to present a safety of an impeller for a proof of its mechanical stability. A static analysis for stress, strain, and deformation within a regular usage is examined. This simulation test shows 357.26×106 Pa for maximum equivalent stress and 0.207mm for total deformation. A fatigue test is carried to provide durability and its result shows that minimum safety factor is 3.2889, which guarantees that it runs without a fatigue failure in 106 cycles. The natural frequencies for the impeller is ranged from 228.09Hz to 1,253.6Hz for the 1st to the 6th mode. Total deformations at these natural frequencies are shown from 6.84mm to 12.631mm. Furthermore, Campbell diagram reveals that a critical speed is not found throughout regular rotational speeds. From the test results for the analysis, this paper concludes that the suggested impeller is proved for its mechanical safety and good to utilize at industries.
        4,000원
        17.
        2019.05 구독 인증기관 무료, 개인회원 유료
        대형 유조선에서 유류의 선적이나 하역에 사용되는 장치인 COPT (Cargo Oil Pump Turbine) 가 매우 큰 형태이므로 이 터빈을 회전시키는 장치가 Rotor disc로서, 내부에 stator ring이 장착되어 있고 이 ring에는 많은 turbine blade가 riveting 방법에 의해 체결되어 있다. riveting 은 재래식 가공 방법으로서 정밀도와 작업자의 근 골격계 직업병 등 많은 문제점을 포함하고 있다. 이러한 문제를 해결하기 위해 riveting 체결방법을 조립방법으로 전환하여 링의 조립정밀 도를 향상하고 stator의 수명을 연장시킬 수 있다. 많은 turbine blade가 링의 중심점을 기준으로 원주상에 배열되어 있는 형태로서 조립을 위한 구조개선을 필요로 한다. 이런 목적을 달성 하기 위해서는 ring 구조를 결구 방식으로 변경하고 조립 후 COPT에 적용하였을 때 안전성이 보장되어야 한다. Stator 링의 모델링과 구조안전성에 대한 검증은 상용 software를 이용하여 결과를 도출한다.
        3,000원
        18.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Mechanical components are to be produced with accurate dimensions in order to function properly in assemblies of a machine. Once designs of mechanical components are created, designers examine the designs by adopting many known experimental methods. A primary test method includes stress and strain evaluation of structural parts. In addition, fatigue test and vibration analysis are an important test method for mechanical components. Real experiments at a laboratory are established when products are manufactured. Since design changes should be done before producing the designs in factories, rapid modifications for new designs are required in production industries. FEM simulation is a proper choice for a design evaluation with speed at a detail stage in design process. This research focuses modeling and mechanical simulation of a mechanical component in order to ensure structural safety. In this paper, a universal joint, being used in driving axels of vehicles, is studied as a target component. A design model is created and tested in some ways by using commercial software of FEM. The designed component is being twisted to transmit heavy power and thus, torsional stress should be under strengths of the component’s material. The next is fatigue analysis to convince fatigue cycles to be within the endurance limit of the material. Another test is a vibration analysis for rotational components. This research draws final conclusions from these test analyses and recommends whether the designed model is under safety condition in terms of mechanical structure.
        4,000원
        19.
        2018.10 구독 인증기관 무료, 개인회원 유료
        Rotor disc (로터 디스크)는 중대형 유조선에서 유류를 하역하는 장치인 COPT (Cargo Oil Pump Turbine)의 터빈을 고속으로 회전시키는 핵심 부품이다. 이 rotor disc는 중심 shaft에 여러 개의 turbine을 원주상으로 배열하고 체결하여 제작한다. 현재의 제작 방법으로는 turbine blade를 배열하고 shroud 덮개로 연결하여 riveting 방식으로 체결한다. 이런 고전적인 방법은 blade pitch의 불균일은 물론 작업 시 오류로 인해 blade에 손상이 가는 경우가 있다. 이러한 단점을 해결하기 위해서는 조립식의 rotor disc를 설계하여 제작방식을 변경해야 한다. 설계뿐만 아니라 조립식의 disc가 구조적으로 안정한지를 평가해야 한다. 본 논문은 blade의 설계와 이를 조립하였을 때에 구조안전성을 평가하기 위해 구조 해석하여 그 안전성을 검증 한다.
        3,000원
        20.
        2018.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Modern manufacturing industries is to produce both precise and robust mechanical parts without failure while they are in service. In order to prevent a part failure for its lifetime, a mechanical design for a part should be examined on a basis of mechanical simulation. A nozzle plate, being a key part in steam engines, changes flow directions of steam in a turbine used in power plant. This paper is to the design and test for part safety and durability. Currently, nozzle plates are fabricated by welding nozzles to their plates. Welding causes some defects on the used materials while they are being manufactured. Another major defect is un-even pitches between welded nozzles. Welding causes phase changes because of high melting temperature of metal. This leads to decay on the welding spots, which weakens their structural strength and then, may lead to early damages on mechanical structures. This research proposes assembly-typed nozzle plate without welding. From the beginning, nozzle and plate are designed for insertion-typed assembly. Nozzle head and foot are designed in accordance with the grooves on outer ring and inner ring of a plate to make mating surfaces. Then the nozzle plate should be proved for structural and fatigue safety before they are put in manufacturing. This research adopts commercial softwares for modeling and mechanical simulation. The test result shows that the design with smaller mating area and deeper insertion produces higher safety in terms of structure and durability. From the conclusion, this paper proposes the assembly-typed nozzle plate to replace the welding typed.
        4,000원
        1 2 3