One of the most important missons that are imposed on merchant ship at sea is to accomplish the safe transportation of cargo loaded. Recently, a study on the seakeeping performance has been carried out on the development of evaluation system related to the synthetic safety of a ship at sea. The seakeeping performance is the ship's ability sailing at, and executing its misson against adverse environmental factors successfully and safely. Until now, however, there has not been any method of quantitative evaluation on the dynamic safety of the ship's cargo loaded. In this regards, this paper has introduced the evaluation method of dynamic safety of the ship's cargo. In order to evaluate the dynamic safety of cargo, the vertical and lateral acceleration which causes the collapse, racking and local structure failure of cargo was adopted as the evaluation factors in the ship's motions. The response amplitude of ship's motions in regular waves is manipulated by NSM (New Strip Method) on a given 2,700 TEU full container vessel under the wind forces of 7, 8 and 9 Beaufort scale. Each response of ship's motions induced by NSM was applied to short-crested irregular waves for stochastic process on evaluation factors and then vertical and lateral acceleration of each cargo was compared with significant amplitude of each acceleration. A representative dangerous factor was determined by comparing permissible values of stacking and racking forces occurred typically to the vertical and transverse directions with the container strength required on ISO 1496 at the positions of forecastle, poop and ship's midship respectively. Through the occurrence probability of the determined factor by Rayleigh's probability density function, the dangerousness which limits loads on container's side wall as an evaluation was applied in judging of the danger of the ship's cargo loaded.
As the faithful performance of ISPS of IMO, nowadays actually applicable an integrated safety and security system in and out of vessel should be organized in views of seafarers. Therefore, this paper is aimed to design a fundamental system for ship's integrated safety and security. The system of integrated grabbing will affect efficiently in any maritime field of material and human flow. Therefore this research will be expected to affect economical side by securing all the risk of maritime issues. In addition to the passenger ship and merchant vessel, it is applicable to other public and private vessels either. As a result of this paper, the system designed collecting various data through integrating the system including RFID reader, PIR sensor, and CMOS camera by putting an individual number into each unit that could be control at easy.
Assessment of the safety of ship's transit in the narrow channel consist of the maneuvering safety determined by the chance of running aground, the maneuvering difficulty determined by ship's workload and master's subjective evaluation. To examine the relation between master's subjective evaluation and maneuvering safety, this utilizes a real-time and full-mission shiphandling simulator in the Korea Marine Training & Research Institutes(KMTRI). The vessel chosen was 60,000-ton, Panamax-type ship. The findings regarding master's subjective evaluation were as follows: -Relation between master's subjective evaluation and common logarithms of stranding probability is linear. -Stranding probability with more than 0.001 is master's subjective evaluation with more than 5.
This paper was a part of the risk management in planning a channel. It utilized Korea Marine Training & Research Institutes(KMTRI) which Houses a real-time, full-mission shiphandling simulator to examine the safety of the ship's transit in the planned channel of Asan port. 6 competent Captains participated in this study. The vessel modelled was a 60,000-ton ship. The two variables(factors) examined were environ-mental conditions such as flood-and-ebb current condition and day-and-night condition. The two variables were combined to produce four experimental conditions. To evaluate the safety of the environmental conditions, two categories of performance measures were analyzed. They were vessel's proximity to channel boundary and vessel controalbility. The findings regar-ding the effects of environmental conditions were as follows : - Closest Point of Approach(CPA) to channel boundary was enough for 60,000-ton ship to transit th-rough the channel with 99.999% confidence level. - Closest Point of Approach(CPA) to channel boundary further was under against-current condition than under with-current condition. -Vessel controlability was better under against-current condition than under with-current condition. -Vessel controlability was better under inbound transit than under outbound transit.