검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2000.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Al2O3SiC particle was prepared was prepared by the self-propagting high temperature sYthesis(SHS) process from a mixture of SiO2, Al and C powders, The fabricated Al2O3SiC particle was applied to 2024Al/(Al2O3SiC)pcomposite as a reinforcement. Aluminum matix composites were fabricares by the powder extrusion method using the synthesized Al2O3SiC particle and commercial 2024Al powder. Theoptimum preparation conditions for Al2O3SiC partticle by SHS process were described. The influence of the Al2O3SiC voiume fraction on the mechanical was composite was also discussed. Despite adiabatic temperature was about 2367K, SHs reaction was completed not by itself, but by using pre-heating. Mean particle size of final particle synthesized was 0.73 m and most of the particle was smaller than 2m. Elastic modulus and tensile strength of the composite increased with increase the volume fraction of reinforcement but, tensile strength depreciated at 30 vol% of reinforcement.
        4,000원
        2.
        2000.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The fabrication process and mechanical properties of SiC particle prefrrms with high volume fraction ranged 50∼71% were investigated to make metal matrix composites for possible applications as heat sinks in electronic packares. The SiC particle preforms with 50∼71vol% of reinforcement were fabricated by a new modified process named ball milling and pressing method. The SiC particle performs were fabricated by ball milling of SiC particles with single sized of 48m in diameter or two different size of 8m and 48min diameter, with collodal SiO2 as inorgnic binder in distilled water, and the mixed slurries were cold pressed for consolidation into final prefom. The compressive strengths og calcined SiC particle prefoms increased from 20MPa to 155MPa with increasing the content of inorganis binder, temperature and time for calcination. The increase of compressive strength of SiC particle bridge the interfaces of two neighboring SiC particles.
        4,000원