검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 10

        1.
        2003.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Synthesis and characteristics of Cu nanopowder were considered by in-situ characterization method using SMPS in pulsed wire evaporation process. With increasing pressure in chamber, particle size and degree of agglomeration increased by increase of collision frequency. Also, it was found from the XRD analyses and BET measurements that crystallite size and particle size decreased with elevating applied voltage. However, SMPS measurements and TEM observation revealed the increase of particle size and degree of agglomeration with increase of applied voltage. These results suggested that particle growth and agglomeration depend on overheating factor in chamber at the early stage and thermal coagulation in filtering system during powder formation until collection.
        4,000원
        6.
        2000.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Al2O3SiC particle was prepared was prepared by the self-propagting high temperature sYthesis(SHS) process from a mixture of SiO2, Al and C powders, The fabricated Al2O3SiC particle was applied to 2024Al/(Al2O3SiC)pcomposite as a reinforcement. Aluminum matix composites were fabricares by the powder extrusion method using the synthesized Al2O3SiC particle and commercial 2024Al powder. Theoptimum preparation conditions for Al2O3SiC partticle by SHS process were described. The influence of the Al2O3SiC voiume fraction on the mechanical was composite was also discussed. Despite adiabatic temperature was about 2367K, SHs reaction was completed not by itself, but by using pre-heating. Mean particle size of final particle synthesized was 0.73 m and most of the particle was smaller than 2m. Elastic modulus and tensile strength of the composite increased with increase the volume fraction of reinforcement but, tensile strength depreciated at 30 vol% of reinforcement.
        4,000원
        7.
        1999.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        금속기지 복합물은 구조용 재료로서 매우 우수한 성질을 지니고 있어 광범위하게 연구되어져 왔다. Al2O3와 SiC는 그들의 우수한 기계적 특성 때문에 일반적인 보강재로서 사용되어져 왔다. 그러나 이들 세라믹 보강재는 비싼 재조 비용 때문에 특별한 목적을 위해서만 한정되어 사용되어져 왔다. 본 연구에서는 우리는 Al 합금기지 복합물에서 SHS법에 의해 합성된 Al2O3-SiC 분말의 보강재로서의 응용 가능성을 살펴보았다. 또한 Al2O3단섬유를 Al기지 하이브리드 복합물에 적용하기 위하여 합성된 분말과 함께 첨가하였다. 25vol% 강화재의 복합물을 제조하기 위하여 용탕단조법을 사용하였다. 미세구조와 결정구조는 SEM, OM 그리고 XRD로 관찰하였고 압축시험과 마모시험으로 기계적인 성질들을 조사하였다.
        4,000원
        9.
        1996.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the effect of the transition elements on the microstructure and mechanical properties of rapidly solidified Al-Mg-X alloys was investigated. As a result of the rapid solidification processing, fine equiaxed grains with a mean diameter of 2 m were observed in these alloys. Many fine particles were found to be distributed rather homogeneously throughout the matrix with relatively large particles occasionally at grain boundaries. The ultimate tensile strengths of Al-Mg-X alloys were found to decrease rather remarkably at 150 without the gain of the ductility at 150 , which may result from segregation of () precipitates. Fine dimples were observed on the fracture surfaces for all alloy systems and the variation of the size and shape of dimples was not observed upon alloy systems. The ductility at 530 was found to be ~100%, suggesting that grain boundary sliding did not contribute to ductiliy despite he grain size stabilization. The absence of superplastic behavior may be associated with low boundary misorientation in rapidly solidified Al-Mg-X alloys.
        4,000원