The objectives of this study were to compare growth of Pllioblastus pygmaed and soil characteristics as affected by difference of soil thickness and mixture ratio in shallow-extensive green roof module system, and to identify the level of soil thickness and mixture as suitable growing condition to achieve the desired plants in green roof. Different soil thickness levels were achieved under 15cm and 25cm of shallow-extensive green roof module system that was made by woody materials for 500×500×300mm. Soil mixture ratio were three types for perlit: peatmoss: leafmold=6:2:2(v/v/v, P6P2L2), perlit: peatmoss: leafmold=5:3:2(v/v/v, P5P3L2) and perlit: peatmoss: leafmold=4:4:2(v/v/v, P4P4L2 ). On June 2006, Pllioblastus pygmaed were planted directly in a green roof module system in rows. All treatment were arranged in a randomized complete block design with three replication. The results are summarized below. In term of soil characteristics, Soil acidity and electric conductivity was measured in pH 6.0∼6.6 and 0.12dS/m∼0.19dS/m, respectively. Organic matter and exchangeable cations desorption fell in the order: P4P4L2> P5P3L2> P6P2L2. P6P2L2 had higher levels of the total solid phase and liquid phase, and P4P4L2 had gas phase for three phases of soil in the 15cm and 25cm soil thickness. Although Pllioblastus pygmaed was possibled soil thickness 15cm, there was a trend towards increased soil thickness with increased leaf length, number of leaves and chlorophyll contents in 25cm. The growth response of Pllioblastus pygmaed had fine and sustain condition in order to P6P2L2 = P5P3L2 > P4P4L2. However, The results of this study suggested that plants grown under P4P4L2 appear a higher density ground covering than plants grown under P6P2L2. Collectively, our data emphasize that soil thickness for growth of Pllioblastus pygmaed were greater than soil mixture ratio in shallow-extensive green roof module system.
본 연구는 다양한 옥상의 환경조건을 감안해 볼 때 지속적인 생장과 생존이 가능한 범위 내의 토양 토심 및 토양배합비에 따른 토양수분변화를 검토함으로써 현재 일률적으로 규정되어 있는 토심을 줄여 하중을 줄이고, 최소한의 관수만으로도 적정수준의 생육에 필요한 토양층 조성을 도출하고자 하였다. 또한 순비기나무 생육에 효과적인 관리방법과 토양조건의 조합형을 탐색제안함으로써 설계 및 시공관리기술의 개발에 필요한 기초자료와 정책에 반영할 수 있는 방안을 모색하고자 하며, 다음과 같은 결론을 얻었다. 대체적으로 모든 실험구에서 토양수분함량이 점점 감소하는 경향을 보이다가 관수를 포함한 강우 시 수분함량이 올라갔으며, S10, S7L3, S5L5 실험구의 경우에는 강우 후 수분함량이 급격히 떨어지는 경향을 나타내었다. 이에 비해 피트모스와 펄라이트가 포함된 P7P1L2, P6P2L2, P5P3L2, P4P4L2 실험구는 완만하게 감소하여 저관리를 위한 옥상에서의 인공토양 사용은 불가피할 것으로 판단된다. 인공토양을 이용한 적정토심 및 토양 배합비는 관수시점 및 강우와 밀접한 관련이 있다고 판단되며, 7㎝ 토심의 경우 잦은 수분관리가 필요할 것으로 판단된다. 15㎝ 실험구의 14일 무관수에서도 충분히 순비기나무가 생육한 점과 P6P2L2 이상의 피트모스 배합비에서 왕성한 생육이 이루어진 점에서 미루어 볼 때 15일 이상의 저관리에 필요한 인공토양의 배합비는 펄라이트 피트모스 부엽토가 6:2:2, 5:3:2, 4:4:2가 될 것으로 판단된다. 다만, 펄라이트가 많이 배합된 토양에서는 토양이 물을 흡입하는 힘인 토양수분장력(kPa)이 높은 수치로 올라가 추후 순비기나무가 활발히 성장할 수 있는 수분장력의 범위를 설정하는데 연구가 지속되어야 할 것이다. 토심 및 토양배합비에 따른 순비기나무의 광합성특성을 살펴보면 수분함량이 적은 7㎝ 실험구에서는 거의 이루어지지 않았으며, 15cm나 25㎝ 실험구 중 인공토양이 배합된 곳에서 활발하게 이루어진 것으로 나타났다. 또한 통계적으로 살펴볼 때 수분함량이 1%씩 증가할 때 광합성률은 2.82%씩 증가하는 것으로 나타났으며 99%의 유의수준을 보였다. 추후 연구에서는 순비기나무의 생육에 필요한 최소한의 수분함량을 판단하고 그에 따른 토양토심별 적정 관수시점을 찾아내 저관리 옥상녹화와 더불어 식물소재 개발에 이바지 하고자 한다. 또한 순비기나무 이외에 옥상녹화에 적합한 목본을 선정하고, 도시열섬현상 완화 효과를 규명하며, 이를 바탕으로 우리나라 중부지역에 알맞은 저관리형 옥상녹화시스템을 구축하고자 하는 연구가 진행되어야 할 것이다.